{"title":"SLIM的交互性能:一个无状态的瘦客户机架构","authors":"B. K. Schmidt, M. Lam, J. Northcutt","doi":"10.1145/319151.319154","DOIUrl":null,"url":null,"abstract":"Taking the concept of thin clients to the limit, this paper proposes that desktop machines should just be simple, stateless I/O devices (display, keyboard, mouse, etc.) that access a shared pool of computational resources over a dedicated interconnection fabric --- much in the same way as a building's telephone services are accessed by a collection of handset devices. The stateless desktop design provides a useful mobility model in which users can transparently resume their work on any desktop console.This paper examines the fundamental premise in this system design that modern, off-the-shelf interconnection technology can support the quality-of-service required by today's graphical and multimedia applications. We devised a methodology for analyzing the interactive performance of modern systems, and we characterized the I/O properties of common, real-life applications (e.g. Netscape, streaming video, and Quake) executing in thin-client environments. We have conducted a series of experiments on the Sun Ray™ 1 implementation of this new system architecture, and our results indicate that it provides an effective means of delivering computational services to a workgroup.We have found that response times over a dedicated network are so low that interactive performance is indistinguishable from a dedicated workstation. A simple pixel encoding protocol requires only modest network resources (as little as a 1Mbps home connection) and is quite competitive with the X protocol. Tens of users running interactive applications can share a processor without any noticeable degradation, and many more can share the network. The simple protocol over a 100Mbps interconnection fabric can support streaming video and Quake at display rates and resolutions which provide a high-fidelity user experience.","PeriodicalId":200853,"journal":{"name":"Proceedings of the seventeenth ACM symposium on Operating systems principles","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"144","resultStr":"{\"title\":\"The interactive performance of SLIM: a stateless, thin-client architecture\",\"authors\":\"B. K. Schmidt, M. Lam, J. Northcutt\",\"doi\":\"10.1145/319151.319154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taking the concept of thin clients to the limit, this paper proposes that desktop machines should just be simple, stateless I/O devices (display, keyboard, mouse, etc.) that access a shared pool of computational resources over a dedicated interconnection fabric --- much in the same way as a building's telephone services are accessed by a collection of handset devices. The stateless desktop design provides a useful mobility model in which users can transparently resume their work on any desktop console.This paper examines the fundamental premise in this system design that modern, off-the-shelf interconnection technology can support the quality-of-service required by today's graphical and multimedia applications. We devised a methodology for analyzing the interactive performance of modern systems, and we characterized the I/O properties of common, real-life applications (e.g. Netscape, streaming video, and Quake) executing in thin-client environments. We have conducted a series of experiments on the Sun Ray™ 1 implementation of this new system architecture, and our results indicate that it provides an effective means of delivering computational services to a workgroup.We have found that response times over a dedicated network are so low that interactive performance is indistinguishable from a dedicated workstation. A simple pixel encoding protocol requires only modest network resources (as little as a 1Mbps home connection) and is quite competitive with the X protocol. Tens of users running interactive applications can share a processor without any noticeable degradation, and many more can share the network. The simple protocol over a 100Mbps interconnection fabric can support streaming video and Quake at display rates and resolutions which provide a high-fidelity user experience.\",\"PeriodicalId\":200853,\"journal\":{\"name\":\"Proceedings of the seventeenth ACM symposium on Operating systems principles\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"144\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the seventeenth ACM symposium on Operating systems principles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/319151.319154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the seventeenth ACM symposium on Operating systems principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/319151.319154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The interactive performance of SLIM: a stateless, thin-client architecture
Taking the concept of thin clients to the limit, this paper proposes that desktop machines should just be simple, stateless I/O devices (display, keyboard, mouse, etc.) that access a shared pool of computational resources over a dedicated interconnection fabric --- much in the same way as a building's telephone services are accessed by a collection of handset devices. The stateless desktop design provides a useful mobility model in which users can transparently resume their work on any desktop console.This paper examines the fundamental premise in this system design that modern, off-the-shelf interconnection technology can support the quality-of-service required by today's graphical and multimedia applications. We devised a methodology for analyzing the interactive performance of modern systems, and we characterized the I/O properties of common, real-life applications (e.g. Netscape, streaming video, and Quake) executing in thin-client environments. We have conducted a series of experiments on the Sun Ray™ 1 implementation of this new system architecture, and our results indicate that it provides an effective means of delivering computational services to a workgroup.We have found that response times over a dedicated network are so low that interactive performance is indistinguishable from a dedicated workstation. A simple pixel encoding protocol requires only modest network resources (as little as a 1Mbps home connection) and is quite competitive with the X protocol. Tens of users running interactive applications can share a processor without any noticeable degradation, and many more can share the network. The simple protocol over a 100Mbps interconnection fabric can support streaming video and Quake at display rates and resolutions which provide a high-fidelity user experience.