{"title":"神经伴侣机器人探针电容压力传感器的机电分析(MEMS)","authors":"Hacene Ameddah","doi":"10.5772/INTECHOPEN.88946","DOIUrl":null,"url":null,"abstract":"The domain of medicine, especially neurosurgery, is very concerned in the integration of robots in many procedures. In this work, we are interested in the Neuromate robot. The latter uses the procedure of stereotaxic surgery but with better planning, greater preci-sion and simpler execution. The Neuromate robot allows in particular the registration with intraoperative images (ventriculographies, and especially angiographies) in order to perfect the planning. In this book, we focus on the contact force measurement system required for the effectiveness of the stimulation between the robot probe and the patient’s head and thus ensure the safety of the patient. A force sensor is integrated upstream of the wrist, the pressure sensor is part of a silicon matrix that has been bonded to a metal plate at 70°C. The study was carried out under the software COMSOL Multiphysics, ide-ally suited for the simulation of applications (Microelectromechanical systems) “MEMS”. After electromechanical stationary survey, deflection of the quadrant when the pressure difference across the membrane was 25 kPa, as expected, the deviation was expected to be greatest at the center of the membrane. The proposed sensor structure is a suitable selection for MEMS capacitive pressure sensors.","PeriodicalId":411781,"journal":{"name":"Becoming Human with Humanoid - From Physical Interaction to Social Intelligence","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromechanical Analysis (MEMS) of a Capacitive Pressure Sensor of a Neuromate Robot Probe\",\"authors\":\"Hacene Ameddah\",\"doi\":\"10.5772/INTECHOPEN.88946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The domain of medicine, especially neurosurgery, is very concerned in the integration of robots in many procedures. In this work, we are interested in the Neuromate robot. The latter uses the procedure of stereotaxic surgery but with better planning, greater preci-sion and simpler execution. The Neuromate robot allows in particular the registration with intraoperative images (ventriculographies, and especially angiographies) in order to perfect the planning. In this book, we focus on the contact force measurement system required for the effectiveness of the stimulation between the robot probe and the patient’s head and thus ensure the safety of the patient. A force sensor is integrated upstream of the wrist, the pressure sensor is part of a silicon matrix that has been bonded to a metal plate at 70°C. The study was carried out under the software COMSOL Multiphysics, ide-ally suited for the simulation of applications (Microelectromechanical systems) “MEMS”. After electromechanical stationary survey, deflection of the quadrant when the pressure difference across the membrane was 25 kPa, as expected, the deviation was expected to be greatest at the center of the membrane. The proposed sensor structure is a suitable selection for MEMS capacitive pressure sensors.\",\"PeriodicalId\":411781,\"journal\":{\"name\":\"Becoming Human with Humanoid - From Physical Interaction to Social Intelligence\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Becoming Human with Humanoid - From Physical Interaction to Social Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.88946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Becoming Human with Humanoid - From Physical Interaction to Social Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.88946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electromechanical Analysis (MEMS) of a Capacitive Pressure Sensor of a Neuromate Robot Probe
The domain of medicine, especially neurosurgery, is very concerned in the integration of robots in many procedures. In this work, we are interested in the Neuromate robot. The latter uses the procedure of stereotaxic surgery but with better planning, greater preci-sion and simpler execution. The Neuromate robot allows in particular the registration with intraoperative images (ventriculographies, and especially angiographies) in order to perfect the planning. In this book, we focus on the contact force measurement system required for the effectiveness of the stimulation between the robot probe and the patient’s head and thus ensure the safety of the patient. A force sensor is integrated upstream of the wrist, the pressure sensor is part of a silicon matrix that has been bonded to a metal plate at 70°C. The study was carried out under the software COMSOL Multiphysics, ide-ally suited for the simulation of applications (Microelectromechanical systems) “MEMS”. After electromechanical stationary survey, deflection of the quadrant when the pressure difference across the membrane was 25 kPa, as expected, the deviation was expected to be greatest at the center of the membrane. The proposed sensor structure is a suitable selection for MEMS capacitive pressure sensors.