局部特征识别:内核配方

C. Wallraven, B. Caputo, Arnulf B. A. Graf
{"title":"局部特征识别:内核配方","authors":"C. Wallraven, B. Caputo, Arnulf B. A. Graf","doi":"10.1109/ICCV.2003.1238351","DOIUrl":null,"url":null,"abstract":"Recent developments in computer vision have shown that local features can provide efficient representations suitable for robust object recognition. Support vector machines have been established as powerful learning algorithms with good generalization capabilities. We combine these two approaches and propose a general kernel method for recognition with local features. We show that the proposed kernel satisfies the Mercer condition and that it is, suitable for many established local feature frameworks. Large-scale recognition results are presented on three different databases, which demonstrate that SVMs with the proposed kernel perform better than standard matching techniques on local features. In addition, experiments on noisy and occluded images show that local feature representations significantly outperform global approaches.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"426","resultStr":"{\"title\":\"Recognition with local features: the kernel recipe\",\"authors\":\"C. Wallraven, B. Caputo, Arnulf B. A. Graf\",\"doi\":\"10.1109/ICCV.2003.1238351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent developments in computer vision have shown that local features can provide efficient representations suitable for robust object recognition. Support vector machines have been established as powerful learning algorithms with good generalization capabilities. We combine these two approaches and propose a general kernel method for recognition with local features. We show that the proposed kernel satisfies the Mercer condition and that it is, suitable for many established local feature frameworks. Large-scale recognition results are presented on three different databases, which demonstrate that SVMs with the proposed kernel perform better than standard matching techniques on local features. In addition, experiments on noisy and occluded images show that local feature representations significantly outperform global approaches.\",\"PeriodicalId\":131580,\"journal\":{\"name\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"426\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2003.1238351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 426

摘要

计算机视觉的最新发展表明,局部特征可以提供适合于鲁棒目标识别的有效表示。支持向量机是一种强大的学习算法,具有良好的泛化能力。我们将这两种方法结合起来,提出了一种基于局部特征识别的通用核方法。我们证明了所提出的内核满足Mercer条件,并且适用于许多已建立的局部特征框架。在三个不同的数据库上给出了大规模的识别结果,结果表明,基于该核的支持向量机在局部特征上的识别效果优于标准匹配技术。此外,对噪声和遮挡图像的实验表明,局部特征表示明显优于全局方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition with local features: the kernel recipe
Recent developments in computer vision have shown that local features can provide efficient representations suitable for robust object recognition. Support vector machines have been established as powerful learning algorithms with good generalization capabilities. We combine these two approaches and propose a general kernel method for recognition with local features. We show that the proposed kernel satisfies the Mercer condition and that it is, suitable for many established local feature frameworks. Large-scale recognition results are presented on three different databases, which demonstrate that SVMs with the proposed kernel perform better than standard matching techniques on local features. In addition, experiments on noisy and occluded images show that local feature representations significantly outperform global approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信