使用表示学习的无监督特征推荐

Anish Datta, S. Bandyopadhyay, Shruti Sachan, A. Pal
{"title":"使用表示学习的无监督特征推荐","authors":"Anish Datta, S. Bandyopadhyay, Shruti Sachan, A. Pal","doi":"10.23919/eusipco55093.2022.9909876","DOIUrl":null,"url":null,"abstract":"Today's world extensively depends on analytics of high dimensional sensor time-series, and, extracting informative representation. Sensor time-series across various applications such as healthcare and human wellness, machine maintenance etc., are generally unlabelled, and, getting the annotations is costly and time-consuming. Here, we propose an unsupervised feature selection method exploiting representation learning with a choice of best clustering and recommended distance measure. Proposed method reduces the feature space, to a compressed latent representation, known as Auto-encoded Compact Sequence of features, by retaining the most informative parts. It further selects a set of discriminative features, by computing the sim-ilarity / dissimilarity among the features in latent space using the recommended best distance measure. We have experimented using diverse time-series from UCR Time Series Classification archive, and observed, proposed method consistently outperforms state-of-the-art feature selection approaches.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Feature Recommendation using Representation Learning\",\"authors\":\"Anish Datta, S. Bandyopadhyay, Shruti Sachan, A. Pal\",\"doi\":\"10.23919/eusipco55093.2022.9909876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today's world extensively depends on analytics of high dimensional sensor time-series, and, extracting informative representation. Sensor time-series across various applications such as healthcare and human wellness, machine maintenance etc., are generally unlabelled, and, getting the annotations is costly and time-consuming. Here, we propose an unsupervised feature selection method exploiting representation learning with a choice of best clustering and recommended distance measure. Proposed method reduces the feature space, to a compressed latent representation, known as Auto-encoded Compact Sequence of features, by retaining the most informative parts. It further selects a set of discriminative features, by computing the sim-ilarity / dissimilarity among the features in latent space using the recommended best distance measure. We have experimented using diverse time-series from UCR Time Series Classification archive, and observed, proposed method consistently outperforms state-of-the-art feature selection approaches.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当今世界广泛依赖于高维传感器时间序列的分析,并提取信息表示。各种应用程序(如医疗保健和人类健康、机器维护等)中的传感器时间序列通常是未标记的,并且获取注释既昂贵又耗时。在这里,我们提出了一种利用表征学习的无监督特征选择方法,通过选择最佳聚类和推荐距离度量。该方法通过保留信息最丰富的部分,将特征空间压缩为一个压缩的潜在表示,即特征的自编码压缩序列。通过使用推荐的最佳距离度量计算潜在空间中特征之间的相似度/不相似度,进一步选择一组判别特征。我们对来自UCR时间序列分类档案的不同时间序列进行了实验,并观察到,所提出的方法始终优于最先进的特征选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Feature Recommendation using Representation Learning
Today's world extensively depends on analytics of high dimensional sensor time-series, and, extracting informative representation. Sensor time-series across various applications such as healthcare and human wellness, machine maintenance etc., are generally unlabelled, and, getting the annotations is costly and time-consuming. Here, we propose an unsupervised feature selection method exploiting representation learning with a choice of best clustering and recommended distance measure. Proposed method reduces the feature space, to a compressed latent representation, known as Auto-encoded Compact Sequence of features, by retaining the most informative parts. It further selects a set of discriminative features, by computing the sim-ilarity / dissimilarity among the features in latent space using the recommended best distance measure. We have experimented using diverse time-series from UCR Time Series Classification archive, and observed, proposed method consistently outperforms state-of-the-art feature selection approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信