用小波熵和神经网络识别局部放电的TEV测量

Guomin Luo, Daming Zhang
{"title":"用小波熵和神经网络识别局部放电的TEV测量","authors":"Guomin Luo, Daming Zhang","doi":"10.1109/POWERCON.2012.6401331","DOIUrl":null,"url":null,"abstract":"Partial discharge (PD) is caused by the deterioration of insulation materials. Its detection and accurate measurement are very important to prevent insulation breakdown and catastrophic failures. Detection of PDs in metal-clad apparatus via TEV method is a promising approach in non-intrusive on-line tests. However, the electrical interference from background environment is the major barrier of improving its measuring accuracy. The combination of wavelet analysis that reveals local features and entropy that measures disorder can just fulfill the requirements of PD signal analysis and is thus investigated in this paper. Then a wavelet-entropy based PD recognition method is proposed. The pulse features that are characterized by wavelet entropy are employed as the input pattern of a classifier constructed with feed-forward back-propagation neural network. Finally, some PD groups with noisy interferences are tested by trained network. The recognition rate of real PD pulses demonstrates the proposed wavelet-entropy based method is effective in PD signal de-noising.","PeriodicalId":176214,"journal":{"name":"2012 IEEE International Conference on Power System Technology (POWERCON)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Recognition of partial discharge using wavelet entropy and neural network for TEV measurement\",\"authors\":\"Guomin Luo, Daming Zhang\",\"doi\":\"10.1109/POWERCON.2012.6401331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partial discharge (PD) is caused by the deterioration of insulation materials. Its detection and accurate measurement are very important to prevent insulation breakdown and catastrophic failures. Detection of PDs in metal-clad apparatus via TEV method is a promising approach in non-intrusive on-line tests. However, the electrical interference from background environment is the major barrier of improving its measuring accuracy. The combination of wavelet analysis that reveals local features and entropy that measures disorder can just fulfill the requirements of PD signal analysis and is thus investigated in this paper. Then a wavelet-entropy based PD recognition method is proposed. The pulse features that are characterized by wavelet entropy are employed as the input pattern of a classifier constructed with feed-forward back-propagation neural network. Finally, some PD groups with noisy interferences are tested by trained network. The recognition rate of real PD pulses demonstrates the proposed wavelet-entropy based method is effective in PD signal de-noising.\",\"PeriodicalId\":176214,\"journal\":{\"name\":\"2012 IEEE International Conference on Power System Technology (POWERCON)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Power System Technology (POWERCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POWERCON.2012.6401331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Power System Technology (POWERCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERCON.2012.6401331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

局部放电(PD)是由绝缘材料劣化引起的。它的检测和准确测量对于防止绝缘击穿和灾难性故障至关重要。在非侵入式在线检测中,TEV法是一种很有前途的方法。然而,背景环境的电干扰是影响其测量精度的主要障碍。揭示局部特征的小波分析与测量无序度的熵相结合正好可以满足PD信号分析的要求,因此本文进行了研究。然后提出了一种基于小波熵的PD识别方法。利用小波熵表征的脉冲特征作为前馈反向传播神经网络构造分类器的输入模式。最后,用训练好的网络对一些有噪声干扰的PD组进行了测试。实验结果表明,基于小波熵的PD信号去噪方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition of partial discharge using wavelet entropy and neural network for TEV measurement
Partial discharge (PD) is caused by the deterioration of insulation materials. Its detection and accurate measurement are very important to prevent insulation breakdown and catastrophic failures. Detection of PDs in metal-clad apparatus via TEV method is a promising approach in non-intrusive on-line tests. However, the electrical interference from background environment is the major barrier of improving its measuring accuracy. The combination of wavelet analysis that reveals local features and entropy that measures disorder can just fulfill the requirements of PD signal analysis and is thus investigated in this paper. Then a wavelet-entropy based PD recognition method is proposed. The pulse features that are characterized by wavelet entropy are employed as the input pattern of a classifier constructed with feed-forward back-propagation neural network. Finally, some PD groups with noisy interferences are tested by trained network. The recognition rate of real PD pulses demonstrates the proposed wavelet-entropy based method is effective in PD signal de-noising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信