非一致csp的一个二分定理

A. Bulatov
{"title":"非一致csp的一个二分定理","authors":"A. Bulatov","doi":"10.1109/FOCS.2017.37","DOIUrl":null,"url":null,"abstract":"In a non-uniform Constraint Satisfaction problem CSP(Γ), where G is a set of relations on a finite set A, the goal is to find an assignment of values to variables subject to constraints imposed on specified sets of variables using the relations from Γ. The Dichotomy Conjecture for the non-uniform CSP states that for every constraint language \\Gm the problem CSP(Γ) is either solvable in polynomial time or is NP-complete. It was proposed by Feder and Vardi in their seminal 1993 paper. In this paper we confirm the Dichotomy Conjecture.","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"365","resultStr":"{\"title\":\"A Dichotomy Theorem for Nonuniform CSPs\",\"authors\":\"A. Bulatov\",\"doi\":\"10.1109/FOCS.2017.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a non-uniform Constraint Satisfaction problem CSP(Γ), where G is a set of relations on a finite set A, the goal is to find an assignment of values to variables subject to constraints imposed on specified sets of variables using the relations from Γ. The Dichotomy Conjecture for the non-uniform CSP states that for every constraint language \\\\Gm the problem CSP(Γ) is either solvable in polynomial time or is NP-complete. It was proposed by Feder and Vardi in their seminal 1993 paper. In this paper we confirm the Dichotomy Conjecture.\",\"PeriodicalId\":311592,\"journal\":{\"name\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"365\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2017.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 365

摘要

在非一致约束满足问题CSP(Γ)中,其中G是有限集合a上的一组关系,目标是使用Γ中的关系找到受特定变量集约束的变量的值赋值。非一致CSP的二分猜想表明,对于每一个约束语言\Gm,问题CSP(Γ)要么在多项式时间内可解,要么是np完全的。它是由Feder和Vardi在他们1993年的开创性论文中提出的。本文证实了二分类猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dichotomy Theorem for Nonuniform CSPs
In a non-uniform Constraint Satisfaction problem CSP(Γ), where G is a set of relations on a finite set A, the goal is to find an assignment of values to variables subject to constraints imposed on specified sets of variables using the relations from Γ. The Dichotomy Conjecture for the non-uniform CSP states that for every constraint language \Gm the problem CSP(Γ) is either solvable in polynomial time or is NP-complete. It was proposed by Feder and Vardi in their seminal 1993 paper. In this paper we confirm the Dichotomy Conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信