基于非参数化方法的流数据异常点并行检测

H. D. Markad, S. Sangve
{"title":"基于非参数化方法的流数据异常点并行检测","authors":"H. D. Markad, S. Sangve","doi":"10.4018/IJSE.2017070102","DOIUrl":null,"url":null,"abstract":"Outlierdetectionisusedinvariousapplicationslikedetectionoffraud,networkanalysis,monitoring trafficovernetworks,manufacturingandenvironmentalsoftware.Thedatastreamswhicharegenerated arecontinuousandchangingovertime.Thisisthereasonwhyitbecomesnearlydifficulttodetect theoutliersintheexistingdatawhichishugeandcontinuousinnature.Thestreameddataisreal timeandchangesovertimeandhenceitisimpracticaltostoredatainthedataspaceandanalyze itforabnormalbehavior.Thelimitationsindataspacehasledtotheproblemofrealtimeanalysis ofdataandprocessingit inFCFSbasis.Theresultsregardingtheabnormalbehaviorhavetobe doneveryquicklyandinalimitedtimeframeandonaninfinitesetofdatastreamscomingoverthe networks.Toaddresstheproblemofdetectingoutliersonareal-timebasisisachallengingtaskand hencehastobemonitoredwiththehelpoftheprocessingpowerusedtodesignthegraphicsofany processingunit.Thealgorithmusedinthispaperusesakernelfunctiontoaccomplishthetask.It producestimelyoutcomeonhighspeedmulti-dimensionaldata.Thismethodincreasesthespeed ofoutlierdetectionby20timesandthespeedgoesonincreasingwiththeincreasewiththenumber ofdataattributesandinputdatarate. KEywORDS Anomaly Intrusion Detection, Compute Unified Device Architecture (CUDA), Gaussian Detection Scheme, Graphics Processing Unit (GPU), Outlier Detection, Parallel Execution","PeriodicalId":272943,"journal":{"name":"Int. J. Synth. Emot.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Parallel Outlier Detection for Streamed Data Using Non-Parameterized Approach\",\"authors\":\"H. D. Markad, S. Sangve\",\"doi\":\"10.4018/IJSE.2017070102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outlierdetectionisusedinvariousapplicationslikedetectionoffraud,networkanalysis,monitoring trafficovernetworks,manufacturingandenvironmentalsoftware.Thedatastreamswhicharegenerated arecontinuousandchangingovertime.Thisisthereasonwhyitbecomesnearlydifficulttodetect theoutliersintheexistingdatawhichishugeandcontinuousinnature.Thestreameddataisreal timeandchangesovertimeandhenceitisimpracticaltostoredatainthedataspaceandanalyze itforabnormalbehavior.Thelimitationsindataspacehasledtotheproblemofrealtimeanalysis ofdataandprocessingit inFCFSbasis.Theresultsregardingtheabnormalbehaviorhavetobe doneveryquicklyandinalimitedtimeframeandonaninfinitesetofdatastreamscomingoverthe networks.Toaddresstheproblemofdetectingoutliersonareal-timebasisisachallengingtaskand hencehastobemonitoredwiththehelpoftheprocessingpowerusedtodesignthegraphicsofany processingunit.Thealgorithmusedinthispaperusesakernelfunctiontoaccomplishthetask.It producestimelyoutcomeonhighspeedmulti-dimensionaldata.Thismethodincreasesthespeed ofoutlierdetectionby20timesandthespeedgoesonincreasingwiththeincreasewiththenumber ofdataattributesandinputdatarate. KEywORDS Anomaly Intrusion Detection, Compute Unified Device Architecture (CUDA), Gaussian Detection Scheme, Graphics Processing Unit (GPU), Outlier Detection, Parallel Execution\",\"PeriodicalId\":272943,\"journal\":{\"name\":\"Int. J. Synth. Emot.\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Synth. Emot.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSE.2017070102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Synth. Emot.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSE.2017070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Outlierdetectionisusedinvariousapplicationslikedetectionoffraud,networkanalysis,monitoring trafficovernetworks,manufacturingandenvironmentalsoftware。Thedatastreamswhicharegenerated arecontinuousandchangingovertime。Thisisthereasonwhyitbecomesnearlydifficulttodetect theoutliersintheexistingdatawhichishugeandcontinuousinnature。Thestreameddataisreal timeandchangesovertimeandhenceitisimpracticaltostoredatainthedataspaceandanalyze itforabnormalbehavior。Thelimitationsindataspacehasledtotheproblemofrealtimeanalysis ofdataandprocessingit inFCFSbasis。Theresultsregardingtheabnormalbehaviorhavetobe doneveryquicklyandinalimitedtimeframeandonaninfinitesetofdatastreamscomingoverthe网络。Toaddresstheproblemofdetectingoutliersonareal-timebasisisachallengingtaskand hencehastobemonitoredwiththehelpoftheprocessingpowerusedtodesignthegraphicsofany processingunit.Thealgorithmusedinthispaperusesakernelfunctiontoaccomplishthetask。It producestimelyoutcomeonhighspeedmulti-dimensionaldata。Thismethodincreasesthespeed ofoutlierdetectionby20timesandthespeedgoesonincreasingwiththeincreasewiththenumber ofdataattributesandinputdatarate。关键词异常入侵检测,计算统一设备架构(CUDA),高斯检测方案,图形处理单元(GPU),离群点检测,并行执行
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Outlier Detection for Streamed Data Using Non-Parameterized Approach
Outlierdetectionisusedinvariousapplicationslikedetectionoffraud,networkanalysis,monitoring trafficovernetworks,manufacturingandenvironmentalsoftware.Thedatastreamswhicharegenerated arecontinuousandchangingovertime.Thisisthereasonwhyitbecomesnearlydifficulttodetect theoutliersintheexistingdatawhichishugeandcontinuousinnature.Thestreameddataisreal timeandchangesovertimeandhenceitisimpracticaltostoredatainthedataspaceandanalyze itforabnormalbehavior.Thelimitationsindataspacehasledtotheproblemofrealtimeanalysis ofdataandprocessingit inFCFSbasis.Theresultsregardingtheabnormalbehaviorhavetobe doneveryquicklyandinalimitedtimeframeandonaninfinitesetofdatastreamscomingoverthe networks.Toaddresstheproblemofdetectingoutliersonareal-timebasisisachallengingtaskand hencehastobemonitoredwiththehelpoftheprocessingpowerusedtodesignthegraphicsofany processingunit.Thealgorithmusedinthispaperusesakernelfunctiontoaccomplishthetask.It producestimelyoutcomeonhighspeedmulti-dimensionaldata.Thismethodincreasesthespeed ofoutlierdetectionby20timesandthespeedgoesonincreasingwiththeincreasewiththenumber ofdataattributesandinputdatarate. KEywORDS Anomaly Intrusion Detection, Compute Unified Device Architecture (CUDA), Gaussian Detection Scheme, Graphics Processing Unit (GPU), Outlier Detection, Parallel Execution
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信