H. D. Markad, S. Sangve
{"title":"基于非参数化方法的流数据异常点并行检测","authors":"H. D. Markad, S. Sangve","doi":"10.4018/IJSE.2017070102","DOIUrl":null,"url":null,"abstract":"Outlierdetectionisusedinvariousapplicationslikedetectionoffraud,networkanalysis,monitoring trafficovernetworks,manufacturingandenvironmentalsoftware.Thedatastreamswhicharegenerated arecontinuousandchangingovertime.Thisisthereasonwhyitbecomesnearlydifficulttodetect theoutliersintheexistingdatawhichishugeandcontinuousinnature.Thestreameddataisreal timeandchangesovertimeandhenceitisimpracticaltostoredatainthedataspaceandanalyze itforabnormalbehavior.Thelimitationsindataspacehasledtotheproblemofrealtimeanalysis ofdataandprocessingit inFCFSbasis.Theresultsregardingtheabnormalbehaviorhavetobe doneveryquicklyandinalimitedtimeframeandonaninfinitesetofdatastreamscomingoverthe networks.Toaddresstheproblemofdetectingoutliersonareal-timebasisisachallengingtaskand hencehastobemonitoredwiththehelpoftheprocessingpowerusedtodesignthegraphicsofany processingunit.Thealgorithmusedinthispaperusesakernelfunctiontoaccomplishthetask.It producestimelyoutcomeonhighspeedmulti-dimensionaldata.Thismethodincreasesthespeed ofoutlierdetectionby20timesandthespeedgoesonincreasingwiththeincreasewiththenumber ofdataattributesandinputdatarate. KEywORDS Anomaly Intrusion Detection, Compute Unified Device Architecture (CUDA), Gaussian Detection Scheme, Graphics Processing Unit (GPU), Outlier Detection, Parallel Execution","PeriodicalId":272943,"journal":{"name":"Int. J. Synth. Emot.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Parallel Outlier Detection for Streamed Data Using Non-Parameterized Approach\",\"authors\":\"H. D. Markad, S. Sangve\",\"doi\":\"10.4018/IJSE.2017070102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outlierdetectionisusedinvariousapplicationslikedetectionoffraud,networkanalysis,monitoring trafficovernetworks,manufacturingandenvironmentalsoftware.Thedatastreamswhicharegenerated arecontinuousandchangingovertime.Thisisthereasonwhyitbecomesnearlydifficulttodetect theoutliersintheexistingdatawhichishugeandcontinuousinnature.Thestreameddataisreal timeandchangesovertimeandhenceitisimpracticaltostoredatainthedataspaceandanalyze itforabnormalbehavior.Thelimitationsindataspacehasledtotheproblemofrealtimeanalysis ofdataandprocessingit inFCFSbasis.Theresultsregardingtheabnormalbehaviorhavetobe doneveryquicklyandinalimitedtimeframeandonaninfinitesetofdatastreamscomingoverthe networks.Toaddresstheproblemofdetectingoutliersonareal-timebasisisachallengingtaskand hencehastobemonitoredwiththehelpoftheprocessingpowerusedtodesignthegraphicsofany processingunit.Thealgorithmusedinthispaperusesakernelfunctiontoaccomplishthetask.It producestimelyoutcomeonhighspeedmulti-dimensionaldata.Thismethodincreasesthespeed ofoutlierdetectionby20timesandthespeedgoesonincreasingwiththeincreasewiththenumber ofdataattributesandinputdatarate. KEywORDS Anomaly Intrusion Detection, Compute Unified Device Architecture (CUDA), Gaussian Detection Scheme, Graphics Processing Unit (GPU), Outlier Detection, Parallel Execution\",\"PeriodicalId\":272943,\"journal\":{\"name\":\"Int. J. Synth. Emot.\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Synth. Emot.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSE.2017070102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Synth. Emot.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSE.2017070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Parallel Outlier Detection for Streamed Data Using Non-Parameterized Approach
Outlierdetectionisusedinvariousapplicationslikedetectionoffraud,networkanalysis,monitoring trafficovernetworks,manufacturingandenvironmentalsoftware.Thedatastreamswhicharegenerated arecontinuousandchangingovertime.Thisisthereasonwhyitbecomesnearlydifficulttodetect theoutliersintheexistingdatawhichishugeandcontinuousinnature.Thestreameddataisreal timeandchangesovertimeandhenceitisimpracticaltostoredatainthedataspaceandanalyze itforabnormalbehavior.Thelimitationsindataspacehasledtotheproblemofrealtimeanalysis ofdataandprocessingit inFCFSbasis.Theresultsregardingtheabnormalbehaviorhavetobe doneveryquicklyandinalimitedtimeframeandonaninfinitesetofdatastreamscomingoverthe networks.Toaddresstheproblemofdetectingoutliersonareal-timebasisisachallengingtaskand hencehastobemonitoredwiththehelpoftheprocessingpowerusedtodesignthegraphicsofany processingunit.Thealgorithmusedinthispaperusesakernelfunctiontoaccomplishthetask.It producestimelyoutcomeonhighspeedmulti-dimensionaldata.Thismethodincreasesthespeed ofoutlierdetectionby20timesandthespeedgoesonincreasingwiththeincreasewiththenumber ofdataattributesandinputdatarate. KEywORDS Anomaly Intrusion Detection, Compute Unified Device Architecture (CUDA), Gaussian Detection Scheme, Graphics Processing Unit (GPU), Outlier Detection, Parallel Execution