R. Linnehan, D. Brady, J. Schindler, L. Perlovsky, M. Rangaswamy
{"title":"基于Cramer-Rao定理的SAR多维孔径设计与分析","authors":"R. Linnehan, D. Brady, J. Schindler, L. Perlovsky, M. Rangaswamy","doi":"10.1109/CAMAP.2005.1574169","DOIUrl":null,"url":null,"abstract":"We are applying the Cramer-Rao theorem to synthetic aperture radar (SAR) processing in order to establish flight paths that permit height estimation and minimize errors in reflectivity measurements. The Cramer-Rao bound (CRB) establishes a lower bound on the error variance of unbiased estimates. Error bounds are developed for multi-dimensional synthetic apertures that improve the overall performance and efficiency of monostatic, single-pass SAR missions. A computationally efficient means for the design and analysis of SAR waveforms is proposed using simulated scattering models that are limited in size. A comparison made with the error bounds for standard SAR show that estimates of scatterer range and cross-range positions are sufficiently accurate for multi-dimensional aperture SAR, even with the additional estimator for height.","PeriodicalId":281761,"journal":{"name":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-dimensional aperture design and analysis for SAR using the Cramer-Rao theorem\",\"authors\":\"R. Linnehan, D. Brady, J. Schindler, L. Perlovsky, M. Rangaswamy\",\"doi\":\"10.1109/CAMAP.2005.1574169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are applying the Cramer-Rao theorem to synthetic aperture radar (SAR) processing in order to establish flight paths that permit height estimation and minimize errors in reflectivity measurements. The Cramer-Rao bound (CRB) establishes a lower bound on the error variance of unbiased estimates. Error bounds are developed for multi-dimensional synthetic apertures that improve the overall performance and efficiency of monostatic, single-pass SAR missions. A computationally efficient means for the design and analysis of SAR waveforms is proposed using simulated scattering models that are limited in size. A comparison made with the error bounds for standard SAR show that estimates of scatterer range and cross-range positions are sufficiently accurate for multi-dimensional aperture SAR, even with the additional estimator for height.\",\"PeriodicalId\":281761,\"journal\":{\"name\":\"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMAP.2005.1574169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAP.2005.1574169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-dimensional aperture design and analysis for SAR using the Cramer-Rao theorem
We are applying the Cramer-Rao theorem to synthetic aperture radar (SAR) processing in order to establish flight paths that permit height estimation and minimize errors in reflectivity measurements. The Cramer-Rao bound (CRB) establishes a lower bound on the error variance of unbiased estimates. Error bounds are developed for multi-dimensional synthetic apertures that improve the overall performance and efficiency of monostatic, single-pass SAR missions. A computationally efficient means for the design and analysis of SAR waveforms is proposed using simulated scattering models that are limited in size. A comparison made with the error bounds for standard SAR show that estimates of scatterer range and cross-range positions are sufficiently accurate for multi-dimensional aperture SAR, even with the additional estimator for height.