用模糊规则类推推理

L. Kóczy, K. Hirota
{"title":"用模糊规则类推推理","authors":"L. Kóczy, K. Hirota","doi":"10.1109/FUZZY.1992.258627","DOIUrl":null,"url":null,"abstract":"In sparse systems rules do not cover the complete observation space and, in the general case, observations do not match with any of the rule antecedents, i.e. there is no direct way to compute a conclusion. A solution to this problem is presented if reasoning by analogy is applied. The basic case of reasoning by analogy is the interpolation of two rules. An extension of this method is extrapolation, another is interpolation of 2k rules. The generalization including all these methods uses an approximation covering the whole space where the complete rule system or an arbitrary subset of it can be used as the basis for the calculation of the conclusion. This generalized algorithm is sketched, and a few examples are presented.<<ETX>>","PeriodicalId":222263,"journal":{"name":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Reasoning by analogy with fuzzy rules\",\"authors\":\"L. Kóczy, K. Hirota\",\"doi\":\"10.1109/FUZZY.1992.258627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In sparse systems rules do not cover the complete observation space and, in the general case, observations do not match with any of the rule antecedents, i.e. there is no direct way to compute a conclusion. A solution to this problem is presented if reasoning by analogy is applied. The basic case of reasoning by analogy is the interpolation of two rules. An extension of this method is extrapolation, another is interpolation of 2k rules. The generalization including all these methods uses an approximation covering the whole space where the complete rule system or an arbitrary subset of it can be used as the basis for the calculation of the conclusion. This generalized algorithm is sketched, and a few examples are presented.<<ETX>>\",\"PeriodicalId\":222263,\"journal\":{\"name\":\"[1992 Proceedings] IEEE International Conference on Fuzzy Systems\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992 Proceedings] IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.1992.258627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1992.258627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在稀疏系统中,规则不覆盖完整的观测空间,通常情况下,观测值与任何规则前词都不匹配,即没有直接的方法来计算结论。通过类比推理,给出了解决这一问题的方法。类推推理的基本情况是两条规则的插补。该方法的一种扩展是外推法,另一种是2k规则内插法。包含所有这些方法的泛化使用覆盖整个空间的近似,其中完整的规则系统或其任意子集可以作为计算结论的基础。本文简要介绍了这种广义算法,并给出了几个实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reasoning by analogy with fuzzy rules
In sparse systems rules do not cover the complete observation space and, in the general case, observations do not match with any of the rule antecedents, i.e. there is no direct way to compute a conclusion. A solution to this problem is presented if reasoning by analogy is applied. The basic case of reasoning by analogy is the interpolation of two rules. An extension of this method is extrapolation, another is interpolation of 2k rules. The generalization including all these methods uses an approximation covering the whole space where the complete rule system or an arbitrary subset of it can be used as the basis for the calculation of the conclusion. This generalized algorithm is sketched, and a few examples are presented.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信