基于小波约束的POCS超分辨率视频序列图像重建算法

B. Tian, J. T. Hsu, Qiang Liu, Ching-Chung Li, R. Sclabassi, Mingui Sun
{"title":"基于小波约束的POCS超分辨率视频序列图像重建算法","authors":"B. Tian, J. T. Hsu, Qiang Liu, Ching-Chung Li, R. Sclabassi, Mingui Sun","doi":"10.1109/ICNNSP.2003.1281101","DOIUrl":null,"url":null,"abstract":"Research interest in multi-frame supperresolution has risen substantially in recent years. Most methods developed deal with operations working directly in the image domain. This paper presents a wavelet-domain superresolution method based on the projection on to convex set (POCS) technique. An iterative procedure is utilized to extract information hidden in a group of video frames to update the wavelet coefficients. Since these coefficients correspond to the high frequency information in the spatial domain, the extracted fine features from other frames augment the individual low-resolution image to a superresolution image. The effectiveness of the algorithm is demonstrated by experimental results.","PeriodicalId":336216,"journal":{"name":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A wavelet constrained POCS supperresolution algorithm for high resolution image reconstruction from video sequence\",\"authors\":\"B. Tian, J. T. Hsu, Qiang Liu, Ching-Chung Li, R. Sclabassi, Mingui Sun\",\"doi\":\"10.1109/ICNNSP.2003.1281101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research interest in multi-frame supperresolution has risen substantially in recent years. Most methods developed deal with operations working directly in the image domain. This paper presents a wavelet-domain superresolution method based on the projection on to convex set (POCS) technique. An iterative procedure is utilized to extract information hidden in a group of video frames to update the wavelet coefficients. Since these coefficients correspond to the high frequency information in the spatial domain, the extracted fine features from other frames augment the individual low-resolution image to a superresolution image. The effectiveness of the algorithm is demonstrated by experimental results.\",\"PeriodicalId\":336216,\"journal\":{\"name\":\"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNNSP.2003.1281101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNSP.2003.1281101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

近年来,对多帧超分辨率的研究兴趣大大增加。大多数开发的方法处理直接在图像域中工作的操作。提出了一种基于凸集投影(POCS)技术的小波域超分辨方法。利用迭代过程提取隐藏在一组视频帧中的信息,更新小波系数。由于这些系数对应于空间域中的高频信息,从其他帧中提取的精细特征将单个低分辨率图像增强为超分辨率图像。实验结果证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A wavelet constrained POCS supperresolution algorithm for high resolution image reconstruction from video sequence
Research interest in multi-frame supperresolution has risen substantially in recent years. Most methods developed deal with operations working directly in the image domain. This paper presents a wavelet-domain superresolution method based on the projection on to convex set (POCS) technique. An iterative procedure is utilized to extract information hidden in a group of video frames to update the wavelet coefficients. Since these coefficients correspond to the high frequency information in the spatial domain, the extracted fine features from other frames augment the individual low-resolution image to a superresolution image. The effectiveness of the algorithm is demonstrated by experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信