{"title":"玉米复杂性状的全基因组关联研究发现提高籽粒产量和品质的基因组区域和基因","authors":"Yheni Dwiningsih, S.Si., M.Si., Ph.D","doi":"10.26877/asset.v4i2.12678","DOIUrl":null,"url":null,"abstract":"This review describes the current status of genome-wide association study (GWAS) of the major crops in maize (Zea mays L.) concentrate on performing association mapping as a novel method in associating genetic and complex traits, current strategy in analyzing of phenotype and genotype data to identify population structure and linkage disequilibrium. GWAS has an important role in food security because this method identified many crucial genomic regions of important traits in the most commercialize crops of the world, such as maize. These complex traits including yield, grain quality, biofortification, biotic and abiotic resistance. GWAS has many advantages correlated with reducing genotyping cost and research time, increasing mapping resolution and larger allele number. Meanwhile, GWAS has two main limitations related to population size and the number of markers. There are many software packages for data analysis in GWAS. The most commonly software that was used in GWAS especially in this crop is TASSEL because frequently updated. Recently, many research papers concentrated on GWAS in maize. GWAS analysis accelerated identification of genetic regions, candidate genes within these genomic regions and their metabolomic analysis correlated to the complex traits in maize for increasing grain yield and grain quality to fulfill the market demands.","PeriodicalId":414022,"journal":{"name":"Advance Sustainable Science Engineering and Technology","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Genome-Wide Association Study of Complex Traits in Maize Detects Genomic Regions and Genes for Increasing Grain Yield and Grain Quality\",\"authors\":\"Yheni Dwiningsih, S.Si., M.Si., Ph.D\",\"doi\":\"10.26877/asset.v4i2.12678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review describes the current status of genome-wide association study (GWAS) of the major crops in maize (Zea mays L.) concentrate on performing association mapping as a novel method in associating genetic and complex traits, current strategy in analyzing of phenotype and genotype data to identify population structure and linkage disequilibrium. GWAS has an important role in food security because this method identified many crucial genomic regions of important traits in the most commercialize crops of the world, such as maize. These complex traits including yield, grain quality, biofortification, biotic and abiotic resistance. GWAS has many advantages correlated with reducing genotyping cost and research time, increasing mapping resolution and larger allele number. Meanwhile, GWAS has two main limitations related to population size and the number of markers. There are many software packages for data analysis in GWAS. The most commonly software that was used in GWAS especially in this crop is TASSEL because frequently updated. Recently, many research papers concentrated on GWAS in maize. GWAS analysis accelerated identification of genetic regions, candidate genes within these genomic regions and their metabolomic analysis correlated to the complex traits in maize for increasing grain yield and grain quality to fulfill the market demands.\",\"PeriodicalId\":414022,\"journal\":{\"name\":\"Advance Sustainable Science Engineering and Technology\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advance Sustainable Science Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26877/asset.v4i2.12678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advance Sustainable Science Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26877/asset.v4i2.12678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genome-Wide Association Study of Complex Traits in Maize Detects Genomic Regions and Genes for Increasing Grain Yield and Grain Quality
This review describes the current status of genome-wide association study (GWAS) of the major crops in maize (Zea mays L.) concentrate on performing association mapping as a novel method in associating genetic and complex traits, current strategy in analyzing of phenotype and genotype data to identify population structure and linkage disequilibrium. GWAS has an important role in food security because this method identified many crucial genomic regions of important traits in the most commercialize crops of the world, such as maize. These complex traits including yield, grain quality, biofortification, biotic and abiotic resistance. GWAS has many advantages correlated with reducing genotyping cost and research time, increasing mapping resolution and larger allele number. Meanwhile, GWAS has two main limitations related to population size and the number of markers. There are many software packages for data analysis in GWAS. The most commonly software that was used in GWAS especially in this crop is TASSEL because frequently updated. Recently, many research papers concentrated on GWAS in maize. GWAS analysis accelerated identification of genetic regions, candidate genes within these genomic regions and their metabolomic analysis correlated to the complex traits in maize for increasing grain yield and grain quality to fulfill the market demands.