p偶的Kr×p的公平总色数

Q3 Computer Science
Anderson G. da Silva, Simone Dantas, Diana Sasaki
{"title":"p偶的Kr×p的公平总色数","authors":"Anderson G. da Silva,&nbsp;Simone Dantas,&nbsp;Diana Sasaki","doi":"10.1016/j.entcs.2019.08.060","DOIUrl":null,"url":null,"abstract":"<div><p>A total coloring is equitable if the number of elements colored by any two distinct colors differs by at most one. The equitable total chromatic number of a graph <span><math><mo>(</mo><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>)</mo></math></span> is the smallest integer for which the graph has an equitable total coloring. Wang (2002) conjectured that <span><math><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>≤</mo><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>≤</mo><mi>Δ</mi><mo>+</mo><mn>2</mn></math></span>. In 1994, Fu proved that there exist equitable (Δ + 2)-total colorings for all complete <em>r</em>-partite <em>p</em>-balanced graphs of odd order. For the even case, he determined that <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>≤</mo><mi>Δ</mi><mo>+</mo><mn>3</mn></math></span>. Silva, Dantas and Sasaki (2018) verified Wang's conjecture when <em>G</em> is a complete <em>r</em>-partite <em>p</em>-balanced graph, showing that <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>=</mo><mi>Δ</mi><mo>+</mo><mn>1</mn></math></span> if <em>G</em> has odd order, and <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>≤</mo><mi>Δ</mi><mo>+</mo><mn>2</mn></math></span> if <em>G</em> has even order. In this work we improve this bound by showing that <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>=</mo><mi>Δ</mi><mo>+</mo><mn>1</mn></math></span> when <em>G</em> is a complete <em>r</em>-partite <em>p</em>-balanced graph with <em>r</em> ≥ 4 even and <em>p</em> even, and for <em>r</em> odd and <em>p</em> even.</p></div>","PeriodicalId":38770,"journal":{"name":"Electronic Notes in Theoretical Computer Science","volume":"346 ","pages":"Pages 685-697"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.entcs.2019.08.060","citationCount":"1","resultStr":"{\"title\":\"Equitable Total Chromatic Number of Kr×p for p Even\",\"authors\":\"Anderson G. da Silva,&nbsp;Simone Dantas,&nbsp;Diana Sasaki\",\"doi\":\"10.1016/j.entcs.2019.08.060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A total coloring is equitable if the number of elements colored by any two distinct colors differs by at most one. The equitable total chromatic number of a graph <span><math><mo>(</mo><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>)</mo></math></span> is the smallest integer for which the graph has an equitable total coloring. Wang (2002) conjectured that <span><math><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>≤</mo><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>≤</mo><mi>Δ</mi><mo>+</mo><mn>2</mn></math></span>. In 1994, Fu proved that there exist equitable (Δ + 2)-total colorings for all complete <em>r</em>-partite <em>p</em>-balanced graphs of odd order. For the even case, he determined that <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>≤</mo><mi>Δ</mi><mo>+</mo><mn>3</mn></math></span>. Silva, Dantas and Sasaki (2018) verified Wang's conjecture when <em>G</em> is a complete <em>r</em>-partite <em>p</em>-balanced graph, showing that <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>=</mo><mi>Δ</mi><mo>+</mo><mn>1</mn></math></span> if <em>G</em> has odd order, and <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>≤</mo><mi>Δ</mi><mo>+</mo><mn>2</mn></math></span> if <em>G</em> has even order. In this work we improve this bound by showing that <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>=</mo><mi>Δ</mi><mo>+</mo><mn>1</mn></math></span> when <em>G</em> is a complete <em>r</em>-partite <em>p</em>-balanced graph with <em>r</em> ≥ 4 even and <em>p</em> even, and for <em>r</em> odd and <em>p</em> even.</p></div>\",\"PeriodicalId\":38770,\"journal\":{\"name\":\"Electronic Notes in Theoretical Computer Science\",\"volume\":\"346 \",\"pages\":\"Pages 685-697\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.entcs.2019.08.060\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571066119301112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571066119301112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

如果被任意两种不同颜色着色的元素的数量最多相差一个,则整个着色是公平的。图的平均总着色数(χe″)是图具有平均总着色的最小整数。Wang(2002)推测Δ+1≤χe″≤Δ+2。1994年,Fu证明了所有奇阶完全r部p平衡图都存在公平(Δ + 2)-全着色。对于偶数情况,他确定χe″≤Δ+3。Silva, Dantas和Sasaki(2018)验证了Wang在G为完全r部p平衡图时的猜想,表明当G为奇阶时χe″=Δ+1,当G为偶阶时χe″≤Δ+2。在本文中,我们改进了这个界,证明了当G是r≥4偶且p为偶、r为奇且p为偶的完全r部p平衡图时,χe″=Δ+1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equitable Total Chromatic Number of Kr×p for p Even

A total coloring is equitable if the number of elements colored by any two distinct colors differs by at most one. The equitable total chromatic number of a graph (χe) is the smallest integer for which the graph has an equitable total coloring. Wang (2002) conjectured that Δ+1χeΔ+2. In 1994, Fu proved that there exist equitable (Δ + 2)-total colorings for all complete r-partite p-balanced graphs of odd order. For the even case, he determined that χeΔ+3. Silva, Dantas and Sasaki (2018) verified Wang's conjecture when G is a complete r-partite p-balanced graph, showing that χe=Δ+1 if G has odd order, and χeΔ+2 if G has even order. In this work we improve this bound by showing that χe=Δ+1 when G is a complete r-partite p-balanced graph with r ≥ 4 even and p even, and for r odd and p even.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Notes in Theoretical Computer Science
Electronic Notes in Theoretical Computer Science Computer Science-Computer Science (all)
自引率
0.00%
发文量
0
期刊介绍: ENTCS is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication and the availability on the electronic media is appropriate. Organizers of conferences whose proceedings appear in ENTCS, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信