使用ML进行结肠癌组织分类

Ashish Tripathi, Kuldeep Kumar, Anuradha Misra, B. Chaurasia
{"title":"使用ML进行结肠癌组织分类","authors":"Ashish Tripathi, Kuldeep Kumar, Anuradha Misra, B. Chaurasia","doi":"10.1109/ISCON57294.2023.10112181","DOIUrl":null,"url":null,"abstract":"In this paper, the classification of colon cancer tissues by means of machine learning approaches is evaluated. In today’s world, a revolutionary advancement has come in the classification and diagnosis of diseases in the medical and healthcare sectors. Deep learning classifiers and machine learning methods are now broadly applied to accurately diagnose a number of diseases. Cancer is one of the world’s most significant roots of death, appealing to the lives of one person out of every six. As per the national library of medicine, the third leading cause of death worldwide is colorectal cancer. Identifying an illness at a premature stage increases the chances of survival. Automated diagnosis and the classification of tissues from images can be completed much more quickly with the use of artificial intelligence. A publicly available IoT dataset CRC–VAL–HE–7K consisting of 7180 images, distributed among nine types of colorectal tissues: background, lymphocytes, adipose, mucus, colorectal adenocarcinoma epithelium, normal colon mucosa, debris, cancer-associated stroma, and, smooth muscle is used after preprocessing. Feature extraction is done by applying Differential-Box-Count on all blocks of images. The dataset is evaluated by these Machine Learning (ML) procedures: K-Nearest Neighbor, Support Vector Machine, Decision Tree, Random Forest, Extreme Gradient Boosting, and Gaussian Naive Bayes. Results show that the performance of Extreme Gradient Boosting is the best and most viable approach.","PeriodicalId":280183,"journal":{"name":"2023 6th International Conference on Information Systems and Computer Networks (ISCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Colon Cancer Tissue Classification Using ML\",\"authors\":\"Ashish Tripathi, Kuldeep Kumar, Anuradha Misra, B. Chaurasia\",\"doi\":\"10.1109/ISCON57294.2023.10112181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the classification of colon cancer tissues by means of machine learning approaches is evaluated. In today’s world, a revolutionary advancement has come in the classification and diagnosis of diseases in the medical and healthcare sectors. Deep learning classifiers and machine learning methods are now broadly applied to accurately diagnose a number of diseases. Cancer is one of the world’s most significant roots of death, appealing to the lives of one person out of every six. As per the national library of medicine, the third leading cause of death worldwide is colorectal cancer. Identifying an illness at a premature stage increases the chances of survival. Automated diagnosis and the classification of tissues from images can be completed much more quickly with the use of artificial intelligence. A publicly available IoT dataset CRC–VAL–HE–7K consisting of 7180 images, distributed among nine types of colorectal tissues: background, lymphocytes, adipose, mucus, colorectal adenocarcinoma epithelium, normal colon mucosa, debris, cancer-associated stroma, and, smooth muscle is used after preprocessing. Feature extraction is done by applying Differential-Box-Count on all blocks of images. The dataset is evaluated by these Machine Learning (ML) procedures: K-Nearest Neighbor, Support Vector Machine, Decision Tree, Random Forest, Extreme Gradient Boosting, and Gaussian Naive Bayes. Results show that the performance of Extreme Gradient Boosting is the best and most viable approach.\",\"PeriodicalId\":280183,\"journal\":{\"name\":\"2023 6th International Conference on Information Systems and Computer Networks (ISCON)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 6th International Conference on Information Systems and Computer Networks (ISCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCON57294.2023.10112181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Conference on Information Systems and Computer Networks (ISCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCON57294.2023.10112181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对机器学习方法在结肠癌组织分类中的应用进行了评估。当今世界,医疗保健部门在疾病分类和诊断方面取得了革命性的进展。深度学习分类器和机器学习方法现在被广泛应用于准确诊断许多疾病。癌症是世界上最重要的死亡根源之一,每六个人中就有一个人死于癌症。根据国家医学图书馆的数据,全球第三大死亡原因是结肠直肠癌。在早期阶段发现疾病会增加生存的机会。使用人工智能可以更快地完成自动诊断和从图像中对组织进行分类。公开物联网数据集CRC-VAL-HE-7K由7180张图像组成,分布在9种结直肠组织中:背景、淋巴细胞、脂肪、粘液、结直肠腺癌上皮、正常结肠黏膜、碎片、癌相关间质和平滑肌。特征提取是通过对图像的所有块应用微分盒计数来完成的。数据集通过以下机器学习(ML)过程进行评估:k -最近邻、支持向量机、决策树、随机森林、极端梯度增强和高斯朴素贝叶斯。结果表明,极限梯度增强是一种性能最好、最可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Colon Cancer Tissue Classification Using ML
In this paper, the classification of colon cancer tissues by means of machine learning approaches is evaluated. In today’s world, a revolutionary advancement has come in the classification and diagnosis of diseases in the medical and healthcare sectors. Deep learning classifiers and machine learning methods are now broadly applied to accurately diagnose a number of diseases. Cancer is one of the world’s most significant roots of death, appealing to the lives of one person out of every six. As per the national library of medicine, the third leading cause of death worldwide is colorectal cancer. Identifying an illness at a premature stage increases the chances of survival. Automated diagnosis and the classification of tissues from images can be completed much more quickly with the use of artificial intelligence. A publicly available IoT dataset CRC–VAL–HE–7K consisting of 7180 images, distributed among nine types of colorectal tissues: background, lymphocytes, adipose, mucus, colorectal adenocarcinoma epithelium, normal colon mucosa, debris, cancer-associated stroma, and, smooth muscle is used after preprocessing. Feature extraction is done by applying Differential-Box-Count on all blocks of images. The dataset is evaluated by these Machine Learning (ML) procedures: K-Nearest Neighbor, Support Vector Machine, Decision Tree, Random Forest, Extreme Gradient Boosting, and Gaussian Naive Bayes. Results show that the performance of Extreme Gradient Boosting is the best and most viable approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信