使用I-MMSE公式和高斯混合模型估计信息界

Bryan Paul, D. Bliss
{"title":"使用I-MMSE公式和高斯混合模型估计信息界","authors":"Bryan Paul, D. Bliss","doi":"10.1109/CISS.2016.7460514","DOIUrl":null,"url":null,"abstract":"We derive a method to bound the mutual information between a noisy and noiseless measurement exploiting the I-MMSE estimation and information theory connection. Modeling the source distribution as a Gaussian mixture model, a closed form expression for upper and lower bounds of the minimum mean square error is found using recent results. Using the connection between rate of information relative to SNR and the minimum mean square error of the estimator, the mutual information can be bounded as well for arbitrary source distributions in Gaussian noise.","PeriodicalId":346776,"journal":{"name":"2016 Annual Conference on Information Science and Systems (CISS)","volume":"307 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Estimation information bounds using the I-MMSE formula and Gaussian mixture models\",\"authors\":\"Bryan Paul, D. Bliss\",\"doi\":\"10.1109/CISS.2016.7460514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive a method to bound the mutual information between a noisy and noiseless measurement exploiting the I-MMSE estimation and information theory connection. Modeling the source distribution as a Gaussian mixture model, a closed form expression for upper and lower bounds of the minimum mean square error is found using recent results. Using the connection between rate of information relative to SNR and the minimum mean square error of the estimator, the mutual information can be bounded as well for arbitrary source distributions in Gaussian noise.\",\"PeriodicalId\":346776,\"journal\":{\"name\":\"2016 Annual Conference on Information Science and Systems (CISS)\",\"volume\":\"307 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Annual Conference on Information Science and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2016.7460514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Annual Conference on Information Science and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2016.7460514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

利用I-MMSE估计和信息论的联系,提出了一种约束有噪声和无噪声测量之间互信息的方法。将源分布建模为高斯混合模型,利用最近的结果找到了最小均方误差上界和下界的封闭形式表达式。利用相对信噪比的信息比率与估计器的最小均方误差之间的联系,对于高斯噪声中的任意源分布,互信息也可以被有界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation information bounds using the I-MMSE formula and Gaussian mixture models
We derive a method to bound the mutual information between a noisy and noiseless measurement exploiting the I-MMSE estimation and information theory connection. Modeling the source distribution as a Gaussian mixture model, a closed form expression for upper and lower bounds of the minimum mean square error is found using recent results. Using the connection between rate of information relative to SNR and the minimum mean square error of the estimator, the mutual information can be bounded as well for arbitrary source distributions in Gaussian noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信