Vi-DRSNet:一种用于医疗保健领域的越南语图像标注的新型混合模型

Doanh C. Bui, N. Nguyen, Nguyen D. Vo, Uyen Han Thuy Thai, Khang Nguyen
{"title":"Vi-DRSNet:一种用于医疗保健领域的越南语图像标注的新型混合模型","authors":"Doanh C. Bui, N. Nguyen, Nguyen D. Vo, Uyen Han Thuy Thai, Khang Nguyen","doi":"10.1109/MAPR56351.2022.9924781","DOIUrl":null,"url":null,"abstract":"Image Captioning is an exciting topic that attracts the research community from both computer vision and natural language processing fields. In this paper, we present a novel hybrid model, which is an effective combination of three modules: Dual-level Collaborative, Meshed-memory Decoder and Adaptive Decoder. In detail, we use Dual-level Collaborative for integrating grid features and region features. Besides, Meshed-memory Decoder is also employed to take advantage of all encoder outputs. Finally, the idea of an Adaptive Decoder is applied for embedding the Vietnamese linguistic aspect into decoding steps. Our approach achieves competitive results compared to other methods on the public and private tests of the VieCap4H benchmark without using any data augmentation method.","PeriodicalId":138642,"journal":{"name":"2022 International Conference on Multimedia Analysis and Pattern Recognition (MAPR)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vi-DRSNet: A Novel Hybrid Model for Vietnamese Image Captioning in Healthcare Domain\",\"authors\":\"Doanh C. Bui, N. Nguyen, Nguyen D. Vo, Uyen Han Thuy Thai, Khang Nguyen\",\"doi\":\"10.1109/MAPR56351.2022.9924781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image Captioning is an exciting topic that attracts the research community from both computer vision and natural language processing fields. In this paper, we present a novel hybrid model, which is an effective combination of three modules: Dual-level Collaborative, Meshed-memory Decoder and Adaptive Decoder. In detail, we use Dual-level Collaborative for integrating grid features and region features. Besides, Meshed-memory Decoder is also employed to take advantage of all encoder outputs. Finally, the idea of an Adaptive Decoder is applied for embedding the Vietnamese linguistic aspect into decoding steps. Our approach achieves competitive results compared to other methods on the public and private tests of the VieCap4H benchmark without using any data augmentation method.\",\"PeriodicalId\":138642,\"journal\":{\"name\":\"2022 International Conference on Multimedia Analysis and Pattern Recognition (MAPR)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Multimedia Analysis and Pattern Recognition (MAPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MAPR56351.2022.9924781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Multimedia Analysis and Pattern Recognition (MAPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MAPR56351.2022.9924781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像字幕是一个令人兴奋的话题,吸引了来自计算机视觉和自然语言处理领域的研究界。本文提出了一种新的混合解码器模型,该模型是双级协作解码器、网格记忆解码器和自适应解码器三个模块的有效组合。具体来说,我们采用了双层协作的方式来整合网格特征和区域特征。此外,还采用了网状记忆解码器,以充分利用所有编码器输出。最后,应用自适应译码器的思想,将越南语语言方面嵌入到译码步骤中。在不使用任何数据增强方法的情况下,与其他方法相比,我们的方法在VieCap4H基准的公共和私有测试中获得了具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vi-DRSNet: A Novel Hybrid Model for Vietnamese Image Captioning in Healthcare Domain
Image Captioning is an exciting topic that attracts the research community from both computer vision and natural language processing fields. In this paper, we present a novel hybrid model, which is an effective combination of three modules: Dual-level Collaborative, Meshed-memory Decoder and Adaptive Decoder. In detail, we use Dual-level Collaborative for integrating grid features and region features. Besides, Meshed-memory Decoder is also employed to take advantage of all encoder outputs. Finally, the idea of an Adaptive Decoder is applied for embedding the Vietnamese linguistic aspect into decoding steps. Our approach achieves competitive results compared to other methods on the public and private tests of the VieCap4H benchmark without using any data augmentation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信