Yimao Sun, K. Ho, Yanbing Yang, Lei Zhang, Liangyin Chen
{"title":"基于消息传递的线性阵列三维定位鲁棒迭代解","authors":"Yimao Sun, K. Ho, Yanbing Yang, Lei Zhang, Liangyin Chen","doi":"10.1109/ICASSP49357.2023.10095795","DOIUrl":null,"url":null,"abstract":"Recent research has shown that using the 1-D signal arrival angles observed by linear arrays can locate a 3-D source in unique co-ordinates. Current methods to solve this localization problem are based on semidefinite programming (SDP) or gradient-based iteration, which are either computationally demanding or facing divergence or local convergence issues. This paper reformulates the maxi-mum likelihood (ML) estimation of the 3-D localization problem using the factor graph model, where an effective algorithm is designed through message passing. Although iterative, the proposed solution is more robust to measurement noise than the Gauss-Newton (GN) iterative solution, and the complexity is lower than the SDP solution without the need to introduce semidefinite relaxation error. Simulations validate the analytical performance and complexity, and con-firm the superiority on the convergence of the proposed solution.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Iterative Solution for Linear Array-Based 3-D Localization by Message Passing\",\"authors\":\"Yimao Sun, K. Ho, Yanbing Yang, Lei Zhang, Liangyin Chen\",\"doi\":\"10.1109/ICASSP49357.2023.10095795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research has shown that using the 1-D signal arrival angles observed by linear arrays can locate a 3-D source in unique co-ordinates. Current methods to solve this localization problem are based on semidefinite programming (SDP) or gradient-based iteration, which are either computationally demanding or facing divergence or local convergence issues. This paper reformulates the maxi-mum likelihood (ML) estimation of the 3-D localization problem using the factor graph model, where an effective algorithm is designed through message passing. Although iterative, the proposed solution is more robust to measurement noise than the Gauss-Newton (GN) iterative solution, and the complexity is lower than the SDP solution without the need to introduce semidefinite relaxation error. Simulations validate the analytical performance and complexity, and con-firm the superiority on the convergence of the proposed solution.\",\"PeriodicalId\":113072,\"journal\":{\"name\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP49357.2023.10095795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10095795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust Iterative Solution for Linear Array-Based 3-D Localization by Message Passing
Recent research has shown that using the 1-D signal arrival angles observed by linear arrays can locate a 3-D source in unique co-ordinates. Current methods to solve this localization problem are based on semidefinite programming (SDP) or gradient-based iteration, which are either computationally demanding or facing divergence or local convergence issues. This paper reformulates the maxi-mum likelihood (ML) estimation of the 3-D localization problem using the factor graph model, where an effective algorithm is designed through message passing. Although iterative, the proposed solution is more robust to measurement noise than the Gauss-Newton (GN) iterative solution, and the complexity is lower than the SDP solution without the need to introduce semidefinite relaxation error. Simulations validate the analytical performance and complexity, and con-firm the superiority on the convergence of the proposed solution.