关于复方阵的两个正交投影组合的可逆性和群逆

Yinlan Chen
{"title":"关于复方阵的两个正交投影组合的可逆性和群逆","authors":"Yinlan Chen","doi":"10.1109/ICACI.2017.7974479","DOIUrl":null,"url":null,"abstract":"For any complex square matrix A, this paper characterizes the invertibility and group inverse of the combinations P = a<inf>1</inf> P<inf>R(A)</inf> + a<inf>2</inf> P<inf>R(A∗)</inf> +a<inf>3</inf> P<inf>R(A)</inf> P<inf>R(A∗)</inf> +a<inf>4</inf> P<inf>R(A∗)</inf> P<inf>R(A)</inf> by M-C-S decomposition of A. Necessary and sufficient conditions of the invertibility and its inverse are presented completely. Also, we characterize the group inverse and give an expression for P<sup>#</sup> when P is group invertible.","PeriodicalId":260701,"journal":{"name":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On invertibility and group inverse of combinations of two orthogonal projectors about a complex square matrix\",\"authors\":\"Yinlan Chen\",\"doi\":\"10.1109/ICACI.2017.7974479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any complex square matrix A, this paper characterizes the invertibility and group inverse of the combinations P = a<inf>1</inf> P<inf>R(A)</inf> + a<inf>2</inf> P<inf>R(A∗)</inf> +a<inf>3</inf> P<inf>R(A)</inf> P<inf>R(A∗)</inf> +a<inf>4</inf> P<inf>R(A∗)</inf> P<inf>R(A)</inf> by M-C-S decomposition of A. Necessary and sufficient conditions of the invertibility and its inverse are presented completely. Also, we characterize the group inverse and give an expression for P<sup>#</sup> when P is group invertible.\",\"PeriodicalId\":260701,\"journal\":{\"name\":\"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2017.7974479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2017.7974479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对任意复方阵A,利用A的M-C-S分解,刻画了组合P = a1 PR(A) + a2 PR(A∗)+a3 PR(A) PR(A∗)+a4 PR(A∗)PR(A)的可逆性和群逆,给出了其可逆性及其逆的充分必要条件。此外,我们还刻画了群逆的性质,并给出了P是群可逆时p#的表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On invertibility and group inverse of combinations of two orthogonal projectors about a complex square matrix
For any complex square matrix A, this paper characterizes the invertibility and group inverse of the combinations P = a1 PR(A) + a2 PR(A∗) +a3 PR(A) PR(A∗) +a4 PR(A∗) PR(A) by M-C-S decomposition of A. Necessary and sufficient conditions of the invertibility and its inverse are presented completely. Also, we characterize the group inverse and give an expression for P# when P is group invertible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信