{"title":"关于复方阵的两个正交投影组合的可逆性和群逆","authors":"Yinlan Chen","doi":"10.1109/ICACI.2017.7974479","DOIUrl":null,"url":null,"abstract":"For any complex square matrix A, this paper characterizes the invertibility and group inverse of the combinations P = a<inf>1</inf> P<inf>R(A)</inf> + a<inf>2</inf> P<inf>R(A∗)</inf> +a<inf>3</inf> P<inf>R(A)</inf> P<inf>R(A∗)</inf> +a<inf>4</inf> P<inf>R(A∗)</inf> P<inf>R(A)</inf> by M-C-S decomposition of A. Necessary and sufficient conditions of the invertibility and its inverse are presented completely. Also, we characterize the group inverse and give an expression for P<sup>#</sup> when P is group invertible.","PeriodicalId":260701,"journal":{"name":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On invertibility and group inverse of combinations of two orthogonal projectors about a complex square matrix\",\"authors\":\"Yinlan Chen\",\"doi\":\"10.1109/ICACI.2017.7974479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any complex square matrix A, this paper characterizes the invertibility and group inverse of the combinations P = a<inf>1</inf> P<inf>R(A)</inf> + a<inf>2</inf> P<inf>R(A∗)</inf> +a<inf>3</inf> P<inf>R(A)</inf> P<inf>R(A∗)</inf> +a<inf>4</inf> P<inf>R(A∗)</inf> P<inf>R(A)</inf> by M-C-S decomposition of A. Necessary and sufficient conditions of the invertibility and its inverse are presented completely. Also, we characterize the group inverse and give an expression for P<sup>#</sup> when P is group invertible.\",\"PeriodicalId\":260701,\"journal\":{\"name\":\"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2017.7974479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2017.7974479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On invertibility and group inverse of combinations of two orthogonal projectors about a complex square matrix
For any complex square matrix A, this paper characterizes the invertibility and group inverse of the combinations P = a1 PR(A) + a2 PR(A∗) +a3 PR(A) PR(A∗) +a4 PR(A∗) PR(A) by M-C-S decomposition of A. Necessary and sufficient conditions of the invertibility and its inverse are presented completely. Also, we characterize the group inverse and give an expression for P# when P is group invertible.