{"title":"混合楔形集成等离子体光子波导","authors":"Z. Manzoor, M. Panahi, A. Pak","doi":"10.23919/USNC-URSI-NRSM.2019.8712883","DOIUrl":null,"url":null,"abstract":"In this work, a novel design of hybrid integrated plasmonic-photonic waveguide is proposed to work at 1550 nm wavelength and have low loss specification of photonic waveguides and high optical mode confinement of plasmonic waveguides. Unlike other designs, metallic nanoparticles are deposed inside the mask layer to have less radiation from the waveguide and increase transmitting light. Moreover, by using wedge shape for the mask layer of the waveguide, higher order modes suppress.","PeriodicalId":142320,"journal":{"name":"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hybrid Wedge-integrated Plasmonic-photonic Waveguide\",\"authors\":\"Z. Manzoor, M. Panahi, A. Pak\",\"doi\":\"10.23919/USNC-URSI-NRSM.2019.8712883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a novel design of hybrid integrated plasmonic-photonic waveguide is proposed to work at 1550 nm wavelength and have low loss specification of photonic waveguides and high optical mode confinement of plasmonic waveguides. Unlike other designs, metallic nanoparticles are deposed inside the mask layer to have less radiation from the waveguide and increase transmitting light. Moreover, by using wedge shape for the mask layer of the waveguide, higher order modes suppress.\",\"PeriodicalId\":142320,\"journal\":{\"name\":\"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/USNC-URSI-NRSM.2019.8712883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC-URSI-NRSM.2019.8712883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this work, a novel design of hybrid integrated plasmonic-photonic waveguide is proposed to work at 1550 nm wavelength and have low loss specification of photonic waveguides and high optical mode confinement of plasmonic waveguides. Unlike other designs, metallic nanoparticles are deposed inside the mask layer to have less radiation from the waveguide and increase transmitting light. Moreover, by using wedge shape for the mask layer of the waveguide, higher order modes suppress.