基于多标签机器学习方法的软件变更请求自动分类

S. Ahsan, Javed Ferzund, F. Wotawa
{"title":"基于多标签机器学习方法的软件变更请求自动分类","authors":"S. Ahsan, Javed Ferzund, F. Wotawa","doi":"10.1109/SEW.2009.15","DOIUrl":null,"url":null,"abstract":"Automatic text classification of the software change request (CR) can be used for automating impact analysis, bug triage and effort estimation. In this paper, we focus on the automation of the process for assigning CRs to developers and present a solution that is based on automatic text classification of CRs. In addition our approach provides the list of source files, which are required to be modified and an estimate for the time required to resolve a given CR. To perform experiments, we downloaded the set of resolved CRs from the OSS project's repository for Mozilla. We labeled each CR with multiple labels i.e., the developer name, the list of source files, and the time spent to resolve the CR. To train the classifier, our approach applies the Problem Transformation and Algorithm Adaptation methods of multi-label machine learning to the multi-labeled CR data. With this approach, we have obtained precision levels up to 71.3% with 40.1% recall.","PeriodicalId":252007,"journal":{"name":"2009 33rd Annual IEEE Software Engineering Workshop","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Automatic Classification of Software Change Request Using Multi-label Machine Learning Methods\",\"authors\":\"S. Ahsan, Javed Ferzund, F. Wotawa\",\"doi\":\"10.1109/SEW.2009.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic text classification of the software change request (CR) can be used for automating impact analysis, bug triage and effort estimation. In this paper, we focus on the automation of the process for assigning CRs to developers and present a solution that is based on automatic text classification of CRs. In addition our approach provides the list of source files, which are required to be modified and an estimate for the time required to resolve a given CR. To perform experiments, we downloaded the set of resolved CRs from the OSS project's repository for Mozilla. We labeled each CR with multiple labels i.e., the developer name, the list of source files, and the time spent to resolve the CR. To train the classifier, our approach applies the Problem Transformation and Algorithm Adaptation methods of multi-label machine learning to the multi-labeled CR data. With this approach, we have obtained precision levels up to 71.3% with 40.1% recall.\",\"PeriodicalId\":252007,\"journal\":{\"name\":\"2009 33rd Annual IEEE Software Engineering Workshop\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 33rd Annual IEEE Software Engineering Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEW.2009.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 33rd Annual IEEE Software Engineering Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEW.2009.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

软件变更请求(CR)的自动文本分类可以用于自动化影响分析、错误分类和工作量估计。在本文中,我们将重点放在将cr分配给开发人员的过程的自动化上,并提出了一个基于cr自动文本分类的解决方案。此外,我们的方法还提供了需要修改的源文件列表,以及解决给定CR所需时间的估计。为了进行实验,我们从Mozilla的OSS项目存储库中下载了一组已解决的CR。我们使用多个标签来标记每个CR,即开发人员名称、源文件列表和解决CR所花费的时间。为了训练分类器,我们的方法将多标签机器学习的问题转换和算法自适应方法应用于多标签CR数据。通过这种方法,我们获得了高达71.3%的精度水平和40.1%的召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Classification of Software Change Request Using Multi-label Machine Learning Methods
Automatic text classification of the software change request (CR) can be used for automating impact analysis, bug triage and effort estimation. In this paper, we focus on the automation of the process for assigning CRs to developers and present a solution that is based on automatic text classification of CRs. In addition our approach provides the list of source files, which are required to be modified and an estimate for the time required to resolve a given CR. To perform experiments, we downloaded the set of resolved CRs from the OSS project's repository for Mozilla. We labeled each CR with multiple labels i.e., the developer name, the list of source files, and the time spent to resolve the CR. To train the classifier, our approach applies the Problem Transformation and Algorithm Adaptation methods of multi-label machine learning to the multi-labeled CR data. With this approach, we have obtained precision levels up to 71.3% with 40.1% recall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信