非阿基米德超空间上的广义函数

A. Khrennikov
{"title":"非阿基米德超空间上的广义函数","authors":"A. Khrennikov","doi":"10.1070/IM1992V039N03ABEH002244","DOIUrl":null,"url":null,"abstract":"A theory is developed for superanalytic generalized functions on a superspace over a non-Archimedean Banach superalgebra with trivial annihilator of the odd part. A Gaussian distribution and the Volkenborn distribution are introduced on the non-Archimedean superspace. Existence and uniqueness theorems are proved for the Cauchy problem for linear differential equations with variable coefficients. The Cauchy problem for non-Archimedean superdiffusion, the Schrodinger equation, and the Schrodinger equation for supersymmetric quantum mechanics on a non-Archimedean Riemann surface are considered as applications.","PeriodicalId":159459,"journal":{"name":"Mathematics of The Ussr-izvestiya","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"GENERALIZED FUNCTIONS ON A NON-ARCHIMEDEAN SUPERSPACE\",\"authors\":\"A. Khrennikov\",\"doi\":\"10.1070/IM1992V039N03ABEH002244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theory is developed for superanalytic generalized functions on a superspace over a non-Archimedean Banach superalgebra with trivial annihilator of the odd part. A Gaussian distribution and the Volkenborn distribution are introduced on the non-Archimedean superspace. Existence and uniqueness theorems are proved for the Cauchy problem for linear differential equations with variable coefficients. The Cauchy problem for non-Archimedean superdiffusion, the Schrodinger equation, and the Schrodinger equation for supersymmetric quantum mechanics on a non-Archimedean Riemann surface are considered as applications.\",\"PeriodicalId\":159459,\"journal\":{\"name\":\"Mathematics of The Ussr-izvestiya\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-izvestiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/IM1992V039N03ABEH002244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/IM1992V039N03ABEH002244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

给出了具有奇部平凡湮灭子的非阿基米德Banach超代数上超空间上的超解析广义函数的一个理论。在非阿基米德超空间上引入高斯分布和Volkenborn分布。证明了变系数线性微分方程Cauchy问题的存在唯一性定理。考虑了非阿基米德超扩散的柯西问题、非阿基米德黎曼曲面上的薛定谔方程和非阿基米德黎曼曲面上的超对称量子力学薛定谔方程的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GENERALIZED FUNCTIONS ON A NON-ARCHIMEDEAN SUPERSPACE
A theory is developed for superanalytic generalized functions on a superspace over a non-Archimedean Banach superalgebra with trivial annihilator of the odd part. A Gaussian distribution and the Volkenborn distribution are introduced on the non-Archimedean superspace. Existence and uniqueness theorems are proved for the Cauchy problem for linear differential equations with variable coefficients. The Cauchy problem for non-Archimedean superdiffusion, the Schrodinger equation, and the Schrodinger equation for supersymmetric quantum mechanics on a non-Archimedean Riemann surface are considered as applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信