M. Tarkhan, Yuqiao Zheng, Guoguang Rong, S. Bian, Ying Tao, Mohamad Sawan
{"title":"小型化光谱仪芯片检测SARS-CoV-2:与台式光谱仪的对比研究及其在手持式检测中的应用前景","authors":"M. Tarkhan, Yuqiao Zheng, Guoguang Rong, S. Bian, Ying Tao, Mohamad Sawan","doi":"10.1145/3543081.3543098","DOIUrl":null,"url":null,"abstract":"A global pandemic of SARS-CoV-2 was caused around the world. The virus is highly contagious and rapidly spreads. Early detection of the virus is crucial to prevent its spread and control outbreaks. Owing to the drawbacks of waiting time and high cost involved in polymerase chain reaction (PCR) testing, low-cost and accurate detection setups with the possibility of being realized as portable systems are desirable. In this study, we examined the feasibility of using a small spectrometer in conjunction with optical biosensors as a measurement system. According to the experimental results related to different concentrations of SARS-CoV-2 ranging from 106 to 102 copies/mL, the surface-mounted device (SMD) size spectrometer and benchtop fiber-optic spectrometer showed good agreement, demonstrating the possibility of using tiny spectrometers to detect the virus at different concentrations using optical biosensors.","PeriodicalId":432056,"journal":{"name":"Proceedings of the 6th International Conference on Biomedical Engineering and Applications","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of SARS-CoV-2 Using a Miniaturized Spectrometer Chip: A Comparative Study Against Benchtop Spectrometer and Its Potential Application to Handheld Detection\",\"authors\":\"M. Tarkhan, Yuqiao Zheng, Guoguang Rong, S. Bian, Ying Tao, Mohamad Sawan\",\"doi\":\"10.1145/3543081.3543098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A global pandemic of SARS-CoV-2 was caused around the world. The virus is highly contagious and rapidly spreads. Early detection of the virus is crucial to prevent its spread and control outbreaks. Owing to the drawbacks of waiting time and high cost involved in polymerase chain reaction (PCR) testing, low-cost and accurate detection setups with the possibility of being realized as portable systems are desirable. In this study, we examined the feasibility of using a small spectrometer in conjunction with optical biosensors as a measurement system. According to the experimental results related to different concentrations of SARS-CoV-2 ranging from 106 to 102 copies/mL, the surface-mounted device (SMD) size spectrometer and benchtop fiber-optic spectrometer showed good agreement, demonstrating the possibility of using tiny spectrometers to detect the virus at different concentrations using optical biosensors.\",\"PeriodicalId\":432056,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Biomedical Engineering and Applications\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Biomedical Engineering and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3543081.3543098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Biomedical Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543081.3543098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of SARS-CoV-2 Using a Miniaturized Spectrometer Chip: A Comparative Study Against Benchtop Spectrometer and Its Potential Application to Handheld Detection
A global pandemic of SARS-CoV-2 was caused around the world. The virus is highly contagious and rapidly spreads. Early detection of the virus is crucial to prevent its spread and control outbreaks. Owing to the drawbacks of waiting time and high cost involved in polymerase chain reaction (PCR) testing, low-cost and accurate detection setups with the possibility of being realized as portable systems are desirable. In this study, we examined the feasibility of using a small spectrometer in conjunction with optical biosensors as a measurement system. According to the experimental results related to different concentrations of SARS-CoV-2 ranging from 106 to 102 copies/mL, the surface-mounted device (SMD) size spectrometer and benchtop fiber-optic spectrometer showed good agreement, demonstrating the possibility of using tiny spectrometers to detect the virus at different concentrations using optical biosensors.