基于平衡谱聚类的多智能体系统时空观测数据分割

B. Takács, Y. Demiris
{"title":"基于平衡谱聚类的多智能体系统时空观测数据分割","authors":"B. Takács, Y. Demiris","doi":"10.1109/ICDM.2008.88","DOIUrl":null,"url":null,"abstract":"We examine the application of spectral clustering for breaking up the behavior of a multi-agent system in space and time into smaller, independent elements. We cluster observations of individual entities in order to identify significant changes in the parameter space (like spatial position)and detect temporal alterations of behavior within the same framework. Data is also influenced by knowledge about important events. Clusters are pre-processed at each step of the iterative subdivision to make the algorithm invariant against spatial scaling, rotation, replay speed and varying sampling frequency. A method is presented to balance spatial and temporal segmentation based on the expected group size. We demonstrate our results by analyzing the outcomes of a computer game.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Balancing Spectral Clustering for Segmenting Spatio-temporal Observations of Multi-agent Systems\",\"authors\":\"B. Takács, Y. Demiris\",\"doi\":\"10.1109/ICDM.2008.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the application of spectral clustering for breaking up the behavior of a multi-agent system in space and time into smaller, independent elements. We cluster observations of individual entities in order to identify significant changes in the parameter space (like spatial position)and detect temporal alterations of behavior within the same framework. Data is also influenced by knowledge about important events. Clusters are pre-processed at each step of the iterative subdivision to make the algorithm invariant against spatial scaling, rotation, replay speed and varying sampling frequency. A method is presented to balance spatial and temporal segmentation based on the expected group size. We demonstrate our results by analyzing the outcomes of a computer game.\",\"PeriodicalId\":252958,\"journal\":{\"name\":\"2008 Eighth IEEE International Conference on Data Mining\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Eighth IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2008.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们研究了光谱聚类的应用,将多智能体系统在空间和时间上的行为分解为更小的独立元素。为了识别参数空间(如空间位置)的重大变化,并在同一框架内检测行为的时间变化,我们对单个实体的观察进行了聚类。数据还受到有关重要事件的知识的影响。在迭代细分的每一步都对聚类进行预处理,使算法对空间缩放、旋转、重放速度和不同采样频率具有不变性。提出了一种基于期望群体大小的时空分割平衡方法。我们通过分析一个电脑游戏的结果来证明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Balancing Spectral Clustering for Segmenting Spatio-temporal Observations of Multi-agent Systems
We examine the application of spectral clustering for breaking up the behavior of a multi-agent system in space and time into smaller, independent elements. We cluster observations of individual entities in order to identify significant changes in the parameter space (like spatial position)and detect temporal alterations of behavior within the same framework. Data is also influenced by knowledge about important events. Clusters are pre-processed at each step of the iterative subdivision to make the algorithm invariant against spatial scaling, rotation, replay speed and varying sampling frequency. A method is presented to balance spatial and temporal segmentation based on the expected group size. We demonstrate our results by analyzing the outcomes of a computer game.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信