A. Anand, N. Koirala, R. Pokharel, H. Kanaya, K. Yoshida
{"title":"宽带多位连续时间δ - σ调制器的系统设计方法","authors":"A. Anand, N. Koirala, R. Pokharel, H. Kanaya, K. Yoshida","doi":"10.1155/2013/275289","DOIUrl":null,"url":null,"abstract":"Systematic design of a low power, wideband and multi-bit continuous-time delta-sigma modulator (CTDSM) is presented. The design methodology is illustrated with a 640 MS/s, 20 MHz signal bandwidth 4th order 2-bit CTDMS implemented in 0.18 µm CMOS technology. The implemented design achieves a peak SNDR of 65.7 dB and a high dynamic range of 70 dB while consuming only 19.7 mW from 1.8 V supply. The design achieves a FoM of 0.31 pJ/conv. Direct path compensation is employed for one clock excess loop delay compensation. In the feedforward topology, capacitive summation using the last opamp eliminates extra summation opamp.","PeriodicalId":232251,"journal":{"name":"International Journal of Microwave Science and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Systematic Design Methodology of a Wideband Multibit Continuous-Time Delta-Sigma Modulator\",\"authors\":\"A. Anand, N. Koirala, R. Pokharel, H. Kanaya, K. Yoshida\",\"doi\":\"10.1155/2013/275289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Systematic design of a low power, wideband and multi-bit continuous-time delta-sigma modulator (CTDSM) is presented. The design methodology is illustrated with a 640 MS/s, 20 MHz signal bandwidth 4th order 2-bit CTDMS implemented in 0.18 µm CMOS technology. The implemented design achieves a peak SNDR of 65.7 dB and a high dynamic range of 70 dB while consuming only 19.7 mW from 1.8 V supply. The design achieves a FoM of 0.31 pJ/conv. Direct path compensation is employed for one clock excess loop delay compensation. In the feedforward topology, capacitive summation using the last opamp eliminates extra summation opamp.\",\"PeriodicalId\":232251,\"journal\":{\"name\":\"International Journal of Microwave Science and Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microwave Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/275289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/275289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Systematic Design Methodology of a Wideband Multibit Continuous-Time Delta-Sigma Modulator
Systematic design of a low power, wideband and multi-bit continuous-time delta-sigma modulator (CTDSM) is presented. The design methodology is illustrated with a 640 MS/s, 20 MHz signal bandwidth 4th order 2-bit CTDMS implemented in 0.18 µm CMOS technology. The implemented design achieves a peak SNDR of 65.7 dB and a high dynamic range of 70 dB while consuming only 19.7 mW from 1.8 V supply. The design achieves a FoM of 0.31 pJ/conv. Direct path compensation is employed for one clock excess loop delay compensation. In the feedforward topology, capacitive summation using the last opamp eliminates extra summation opamp.