K. Fatahalian, Edward Luong, S. Boulos, K. Akeley, W. Mark, P. Hanrahan
{"title":"具有散焦和运动模糊的微多边形的数据并行光栅化","authors":"K. Fatahalian, Edward Luong, S. Boulos, K. Akeley, W. Mark, P. Hanrahan","doi":"10.1145/1572769.1572780","DOIUrl":null,"url":null,"abstract":"Current GPUs rasterize micropolygons (polygons approximately one pixel in size) inefficiently. We design and analyze the costs of three alternative data-parallel algorithms for rasterizing micropolygon workloads for the real-time domain. First, we demonstrate that efficient micropolygon rasterization requires parallelism across many polygons, not just within a single polygon. Second, we produce a data-parallel implementation of an existing stochastic rasterization algorithm by Pixar, which is able to produce motion blur and depth-of-field effects. Third, we provide an algorithm that leverages interleaved sampling for motion blur and camera defocus. This algorithm outperforms Pixar's algorithm when rendering objects undergoing moderate defocus or high motion and has the added benefit of predictable performance.","PeriodicalId":163044,"journal":{"name":"Proceedings of the Conference on High Performance Graphics 2009","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":"{\"title\":\"Data-parallel rasterization of micropolygons with defocus and motion blur\",\"authors\":\"K. Fatahalian, Edward Luong, S. Boulos, K. Akeley, W. Mark, P. Hanrahan\",\"doi\":\"10.1145/1572769.1572780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current GPUs rasterize micropolygons (polygons approximately one pixel in size) inefficiently. We design and analyze the costs of three alternative data-parallel algorithms for rasterizing micropolygon workloads for the real-time domain. First, we demonstrate that efficient micropolygon rasterization requires parallelism across many polygons, not just within a single polygon. Second, we produce a data-parallel implementation of an existing stochastic rasterization algorithm by Pixar, which is able to produce motion blur and depth-of-field effects. Third, we provide an algorithm that leverages interleaved sampling for motion blur and camera defocus. This algorithm outperforms Pixar's algorithm when rendering objects undergoing moderate defocus or high motion and has the added benefit of predictable performance.\",\"PeriodicalId\":163044,\"journal\":{\"name\":\"Proceedings of the Conference on High Performance Graphics 2009\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"82\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Conference on High Performance Graphics 2009\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1572769.1572780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on High Performance Graphics 2009","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1572769.1572780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data-parallel rasterization of micropolygons with defocus and motion blur
Current GPUs rasterize micropolygons (polygons approximately one pixel in size) inefficiently. We design and analyze the costs of three alternative data-parallel algorithms for rasterizing micropolygon workloads for the real-time domain. First, we demonstrate that efficient micropolygon rasterization requires parallelism across many polygons, not just within a single polygon. Second, we produce a data-parallel implementation of an existing stochastic rasterization algorithm by Pixar, which is able to produce motion blur and depth-of-field effects. Third, we provide an algorithm that leverages interleaved sampling for motion blur and camera defocus. This algorithm outperforms Pixar's algorithm when rendering objects undergoing moderate defocus or high motion and has the added benefit of predictable performance.