反投影算子优化层析成像伪影抑制

I. Kazantsev
{"title":"反投影算子优化层析成像伪影抑制","authors":"I. Kazantsev","doi":"10.1109/ICIP.1996.559607","DOIUrl":null,"url":null,"abstract":"An approach is described for determining a vector of summation weights which gives the best approximation in backprojection operation for image reconstruction from projections. An algorithm for the best choice of summation weights is presented and their influence on the reconstruction quality in the case of few projections is illustrated. Extension of the approach to the projection decomposed parts is considered. The method suggested results in artefacts suppression and reconstruction accuracy improvement.","PeriodicalId":192947,"journal":{"name":"Proceedings of 3rd IEEE International Conference on Image Processing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tomographic artefacts suppression via backprojection operator optimization\",\"authors\":\"I. Kazantsev\",\"doi\":\"10.1109/ICIP.1996.559607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An approach is described for determining a vector of summation weights which gives the best approximation in backprojection operation for image reconstruction from projections. An algorithm for the best choice of summation weights is presented and their influence on the reconstruction quality in the case of few projections is illustrated. Extension of the approach to the projection decomposed parts is considered. The method suggested results in artefacts suppression and reconstruction accuracy improvement.\",\"PeriodicalId\":192947,\"journal\":{\"name\":\"Proceedings of 3rd IEEE International Conference on Image Processing\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 3rd IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.1996.559607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1996.559607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

描述了一种确定加权和矢量的方法,该方法在投影重建图像的反向投影操作中给出了最佳近似值。给出了一种选择和权值的最佳算法,并说明了在投影较少的情况下,和权值对重建质量的影响。将该方法推广到投影分解部分。结果表明,该方法抑制了伪影,提高了重建精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tomographic artefacts suppression via backprojection operator optimization
An approach is described for determining a vector of summation weights which gives the best approximation in backprojection operation for image reconstruction from projections. An algorithm for the best choice of summation weights is presented and their influence on the reconstruction quality in the case of few projections is illustrated. Extension of the approach to the projection decomposed parts is considered. The method suggested results in artefacts suppression and reconstruction accuracy improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信