压缩域下HEVC视频取证研究综述

Neetu Singla, Sushama Nagpal, Jyotsna Singh
{"title":"压缩域下HEVC视频取证研究综述","authors":"Neetu Singla, Sushama Nagpal, Jyotsna Singh","doi":"10.5815/ijigsp.2022.05.04","DOIUrl":null,"url":null,"abstract":": In recent years, video forensic investigation has become a prominent research area, due to the adverse effect of fake videos on networks, people and society. This paper summarizes all the existing methodologies used for forgery detection in H.265/HEVC videos. HEVC video forgery is generally classified into two categories as video quality forgery and video content forgery. The occurrence of various forgeries such as transcoding, fake-bitrate, inter-frame forgery and intra-frame forgery is deeply analyzed based on features extracted from the HEVC compression domain. The major findings of this research are (i) Less focus on transcoding detection, (ii) Non-availability of HEVC forged video dataset (iii) More focus on double compression detection for forgery detection, and (iv) Non-consideration of adaptive-GOP structure. The forgery detection in the video is critically important due to its wide use as the primary source of information in criminal investigations and proving the authenticity of contents. So, the forgery detection accuracy is of major concern at the present time. Although, various forgery detection methods are developed in past but the findings of this review point out the need of developing more effective detection methods with high accuracy.","PeriodicalId":378340,"journal":{"name":"International Journal of Image, Graphics and Signal Processing","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review on HEVC Video Forensic Investigation under Compressed Domain\",\"authors\":\"Neetu Singla, Sushama Nagpal, Jyotsna Singh\",\"doi\":\"10.5815/ijigsp.2022.05.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In recent years, video forensic investigation has become a prominent research area, due to the adverse effect of fake videos on networks, people and society. This paper summarizes all the existing methodologies used for forgery detection in H.265/HEVC videos. HEVC video forgery is generally classified into two categories as video quality forgery and video content forgery. The occurrence of various forgeries such as transcoding, fake-bitrate, inter-frame forgery and intra-frame forgery is deeply analyzed based on features extracted from the HEVC compression domain. The major findings of this research are (i) Less focus on transcoding detection, (ii) Non-availability of HEVC forged video dataset (iii) More focus on double compression detection for forgery detection, and (iv) Non-consideration of adaptive-GOP structure. The forgery detection in the video is critically important due to its wide use as the primary source of information in criminal investigations and proving the authenticity of contents. So, the forgery detection accuracy is of major concern at the present time. Although, various forgery detection methods are developed in past but the findings of this review point out the need of developing more effective detection methods with high accuracy.\",\"PeriodicalId\":378340,\"journal\":{\"name\":\"International Journal of Image, Graphics and Signal Processing\",\"volume\":\"152 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image, Graphics and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijigsp.2022.05.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image, Graphics and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijigsp.2022.05.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,由于虚假视频对网络、对人、对社会的不良影响,视频取证侦查成为一个突出的研究领域。本文总结了目前用于H.265/HEVC视频伪造检测的各种方法。HEVC视频伪造一般分为视频质量伪造和视频内容伪造两大类。基于从HEVC压缩域中提取的特征,深入分析了转码、假比特率、帧间伪造和帧内伪造等各种伪造行为的发生。本研究的主要发现是:(i)较少关注转码检测;(ii) HEVC伪造视频数据集不可用;(iii)更多关注伪造检测的双压缩检测;(iv)未考虑自适应gop结构。视频被广泛用作刑事调查和证明内容真实性的主要信息来源,因此视频伪造检测至关重要。因此,伪造检测的准确性是目前人们关注的主要问题。虽然过去已经开发了各种伪造检测方法,但本文的研究结果表明,需要开发更有效、更准确的检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Review on HEVC Video Forensic Investigation under Compressed Domain
: In recent years, video forensic investigation has become a prominent research area, due to the adverse effect of fake videos on networks, people and society. This paper summarizes all the existing methodologies used for forgery detection in H.265/HEVC videos. HEVC video forgery is generally classified into two categories as video quality forgery and video content forgery. The occurrence of various forgeries such as transcoding, fake-bitrate, inter-frame forgery and intra-frame forgery is deeply analyzed based on features extracted from the HEVC compression domain. The major findings of this research are (i) Less focus on transcoding detection, (ii) Non-availability of HEVC forged video dataset (iii) More focus on double compression detection for forgery detection, and (iv) Non-consideration of adaptive-GOP structure. The forgery detection in the video is critically important due to its wide use as the primary source of information in criminal investigations and proving the authenticity of contents. So, the forgery detection accuracy is of major concern at the present time. Although, various forgery detection methods are developed in past but the findings of this review point out the need of developing more effective detection methods with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信