基于分布变分推理的异方差高斯过程元建模

Wen Wang, Xi Chen
{"title":"基于分布变分推理的异方差高斯过程元建模","authors":"Wen Wang, Xi Chen","doi":"10.1109/WSC40007.2019.9004911","DOIUrl":null,"url":null,"abstract":"In this paper, we generalize the variational Bayesian inference-based Gaussian process (VBGP) modeling approach for handling large-scale heteroscedastic datasets. VBGP is suitable for simultaneously estimating the underlying mean and variance functions with a single simulation output available at each design point. To improve the scalability of VBGP, we consider building distributed VBGP (DVBGP) models and their hierarchical versions by partitioning a dataset and aggregating individual subset VBGP predictions based on the idea of \"transductive combination of GP experts.\" Numerical evaluations are performed to demonstrate the performance of the DVBGP models from which some insights are derived.","PeriodicalId":127025,"journal":{"name":"2019 Winter Simulation Conference (WSC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distributed Variational Inference-Based Heteroscedastic Gaussian Process Metamodeling\",\"authors\":\"Wen Wang, Xi Chen\",\"doi\":\"10.1109/WSC40007.2019.9004911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we generalize the variational Bayesian inference-based Gaussian process (VBGP) modeling approach for handling large-scale heteroscedastic datasets. VBGP is suitable for simultaneously estimating the underlying mean and variance functions with a single simulation output available at each design point. To improve the scalability of VBGP, we consider building distributed VBGP (DVBGP) models and their hierarchical versions by partitioning a dataset and aggregating individual subset VBGP predictions based on the idea of \\\"transductive combination of GP experts.\\\" Numerical evaluations are performed to demonstrate the performance of the DVBGP models from which some insights are derived.\",\"PeriodicalId\":127025,\"journal\":{\"name\":\"2019 Winter Simulation Conference (WSC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC40007.2019.9004911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC40007.2019.9004911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将变分贝叶斯推理高斯过程(VBGP)建模方法推广到处理大规模异方差数据集。VBGP适用于同时估计底层均值和方差函数,每个设计点只有一个仿真输出。为了提高VBGP的可扩展性,我们考虑构建分布式VBGP (DVBGP)模型及其分层版本,方法是基于“GP专家的转换组合”的思想,对数据集进行分区,并对VBGP预测的各个子集进行聚合。进行数值评估以证明DVBGP模型的性能,从中得出一些见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Variational Inference-Based Heteroscedastic Gaussian Process Metamodeling
In this paper, we generalize the variational Bayesian inference-based Gaussian process (VBGP) modeling approach for handling large-scale heteroscedastic datasets. VBGP is suitable for simultaneously estimating the underlying mean and variance functions with a single simulation output available at each design point. To improve the scalability of VBGP, we consider building distributed VBGP (DVBGP) models and their hierarchical versions by partitioning a dataset and aggregating individual subset VBGP predictions based on the idea of "transductive combination of GP experts." Numerical evaluations are performed to demonstrate the performance of the DVBGP models from which some insights are derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信