持续集成中避免失速的变化感知构建预测模型

Foyzul Hassan, Xiaoyin Wang
{"title":"持续集成中避免失速的变化感知构建预测模型","authors":"Foyzul Hassan, Xiaoyin Wang","doi":"10.1109/ESEM.2017.23","DOIUrl":null,"url":null,"abstract":"Continuous Integration(CI) is a widely used development practice where developers integrate their work after submitting code changes at central repository. CI servers usually monitor central repository for code change submission and automatically build software with changed code, perform unit testing, integration testing and provide test summary report. If build or test fails developers fix those issues and submit the code changes. Continuous submission of code modification by developers and build latency time creates stalls at CI server build pipeline and hence developers have to wait long time to get build outcome. In this paper, we proposed build prediction model that uses TravisTorrent data set with build error log clustering and AST level code change modification data to predict whether a build will be successful or not without attempting actual build so that developer can get early build outcome result. With the proposed model we can predict build outcome with an average F-Measure over 87% on all three build systems (Ant, Maven, Gradle) under the cross-project prediction scenario.","PeriodicalId":213866,"journal":{"name":"2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Change-Aware Build Prediction Model for Stall Avoidance in Continuous Integration\",\"authors\":\"Foyzul Hassan, Xiaoyin Wang\",\"doi\":\"10.1109/ESEM.2017.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous Integration(CI) is a widely used development practice where developers integrate their work after submitting code changes at central repository. CI servers usually monitor central repository for code change submission and automatically build software with changed code, perform unit testing, integration testing and provide test summary report. If build or test fails developers fix those issues and submit the code changes. Continuous submission of code modification by developers and build latency time creates stalls at CI server build pipeline and hence developers have to wait long time to get build outcome. In this paper, we proposed build prediction model that uses TravisTorrent data set with build error log clustering and AST level code change modification data to predict whether a build will be successful or not without attempting actual build so that developer can get early build outcome result. With the proposed model we can predict build outcome with an average F-Measure over 87% on all three build systems (Ant, Maven, Gradle) under the cross-project prediction scenario.\",\"PeriodicalId\":213866,\"journal\":{\"name\":\"2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESEM.2017.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESEM.2017.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

持续集成(CI)是一种广泛使用的开发实践,开发人员在向中央存储库提交代码更改后集成他们的工作。CI服务器通常监控代码变更提交的中央存储库,并自动使用更改后的代码构建软件,执行单元测试、集成测试并提供测试总结报告。如果构建或测试失败,开发人员修复这些问题并提交代码更改。开发人员不断提交代码修改和构建延迟时间会在CI服务器构建管道中造成停顿,因此开发人员必须等待很长时间才能获得构建结果。在本文中,我们提出了构建预测模型,该模型使用TravisTorrent数据集与构建错误日志聚类和AST级别的代码更改修改数据来预测构建是否成功,而无需尝试实际构建,以便开发人员可以获得早期构建结果。使用所提出的模型,我们可以在跨项目预测场景下,在所有三个构建系统(Ant、Maven、Gradle)上预测构建结果的平均F-Measure超过87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Change-Aware Build Prediction Model for Stall Avoidance in Continuous Integration
Continuous Integration(CI) is a widely used development practice where developers integrate their work after submitting code changes at central repository. CI servers usually monitor central repository for code change submission and automatically build software with changed code, perform unit testing, integration testing and provide test summary report. If build or test fails developers fix those issues and submit the code changes. Continuous submission of code modification by developers and build latency time creates stalls at CI server build pipeline and hence developers have to wait long time to get build outcome. In this paper, we proposed build prediction model that uses TravisTorrent data set with build error log clustering and AST level code change modification data to predict whether a build will be successful or not without attempting actual build so that developer can get early build outcome result. With the proposed model we can predict build outcome with an average F-Measure over 87% on all three build systems (Ant, Maven, Gradle) under the cross-project prediction scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信