{"title":"多元广义双曲随机向量的二次型","authors":"S. Broda, Juan Arismendi-Zambrano","doi":"10.2139/ssrn.3369208","DOIUrl":null,"url":null,"abstract":"\n This article presents exact and approximate expressions for tail probabilities and partial moments of quadratic forms in multivariate generalized hyperbolic random vectors. The derivations involve a generalization of the classic inversion formula for distribution functions (Gil-Pelaez, 1951). Two numerical applications are considered: the distribution of the two-stage least squares estimator and the expected shortfall of a quadratic portfolio.","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Quadratic Forms in Multivariate Generalized Hyperbolic Random Vectors\",\"authors\":\"S. Broda, Juan Arismendi-Zambrano\",\"doi\":\"10.2139/ssrn.3369208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article presents exact and approximate expressions for tail probabilities and partial moments of quadratic forms in multivariate generalized hyperbolic random vectors. The derivations involve a generalization of the classic inversion formula for distribution functions (Gil-Pelaez, 1951). Two numerical applications are considered: the distribution of the two-stage least squares estimator and the expected shortfall of a quadratic portfolio.\",\"PeriodicalId\":260073,\"journal\":{\"name\":\"Mathematics eJournal\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3369208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3369208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Quadratic Forms in Multivariate Generalized Hyperbolic Random Vectors
This article presents exact and approximate expressions for tail probabilities and partial moments of quadratic forms in multivariate generalized hyperbolic random vectors. The derivations involve a generalization of the classic inversion formula for distribution functions (Gil-Pelaez, 1951). Two numerical applications are considered: the distribution of the two-stage least squares estimator and the expected shortfall of a quadratic portfolio.