社会学习机制的计算效益:刺激增强和模拟

M. Cakmak, N. DePalma, R. Arriaga, A. Thomaz
{"title":"社会学习机制的计算效益:刺激增强和模拟","authors":"M. Cakmak, N. DePalma, R. Arriaga, A. Thomaz","doi":"10.1109/DEVLRN.2009.5175528","DOIUrl":null,"url":null,"abstract":"Social learning in robotics has largely focused on imitation learning. In this work, we take a broader view of social learning and are interested in the multifaceted ways that a social partner can influence the learning process. We implement stimulus enhancement and emulation on a robot, and illustrate the computational benefits of social learning over individual learning. Additionally we characterize the differences between these two social learning strategies, showing that the preferred strategy is dependent on the current behavior of the social partner. We demonstrate these learning results both in simulation and with physical robot ‘playmates’.","PeriodicalId":192225,"journal":{"name":"2009 IEEE 8th International Conference on Development and Learning","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Computational benefits of social learning mechanisms: Stimulus enhancement and emulation\",\"authors\":\"M. Cakmak, N. DePalma, R. Arriaga, A. Thomaz\",\"doi\":\"10.1109/DEVLRN.2009.5175528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social learning in robotics has largely focused on imitation learning. In this work, we take a broader view of social learning and are interested in the multifaceted ways that a social partner can influence the learning process. We implement stimulus enhancement and emulation on a robot, and illustrate the computational benefits of social learning over individual learning. Additionally we characterize the differences between these two social learning strategies, showing that the preferred strategy is dependent on the current behavior of the social partner. We demonstrate these learning results both in simulation and with physical robot ‘playmates’.\",\"PeriodicalId\":192225,\"journal\":{\"name\":\"2009 IEEE 8th International Conference on Development and Learning\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 8th International Conference on Development and Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEVLRN.2009.5175528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 8th International Conference on Development and Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2009.5175528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

机器人的社会学习主要集中在模仿学习上。在这项工作中,我们对社会学习采取了更广泛的看法,并对社会伙伴影响学习过程的多方面方式感兴趣。我们在机器人上实现了刺激增强和仿真,并说明了社会学习相对于个体学习的计算优势。此外,我们描述了这两种社会学习策略之间的差异,表明首选策略取决于社会伙伴的当前行为。我们在模拟和物理机器人“玩伴”中展示了这些学习结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational benefits of social learning mechanisms: Stimulus enhancement and emulation
Social learning in robotics has largely focused on imitation learning. In this work, we take a broader view of social learning and are interested in the multifaceted ways that a social partner can influence the learning process. We implement stimulus enhancement and emulation on a robot, and illustrate the computational benefits of social learning over individual learning. Additionally we characterize the differences between these two social learning strategies, showing that the preferred strategy is dependent on the current behavior of the social partner. We demonstrate these learning results both in simulation and with physical robot ‘playmates’.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信