动态图分析的有效数据结构

Benjamin Schiller, J. Castrillón, T. Strufe
{"title":"动态图分析的有效数据结构","authors":"Benjamin Schiller, J. Castrillón, T. Strufe","doi":"10.1109/SITIS.2015.94","DOIUrl":null,"url":null,"abstract":"In the era of social networks, gene sequencing, and big data, a new class of applications that analyze the properties of large graphs as they dynamically change over time has emerged. The performance of these applications is highly influenced by the data structures used to store and access the graph in memory. Depending on its size and structure, update frequency, and read accesses of the analysis, the use of different data structures can yield great performance variations. Even for expert programmers, it is not always obvious, which data structure is the best choice for a given scenario. In this paper, we present a framework for handling this issue automatically. It provides compile-time support for automatically selecting the most efficient data structures for a given graph analysis application assuming a consistent workload on the graph. We perform a measurement study to better understand the performance of five data structures and evaluate a prototype Java implementation of our framework. It achieves a speedup of up to 4.7× compared to basic data structure configurations for the analysis of real-world dynamic graphs.","PeriodicalId":128616,"journal":{"name":"2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"269 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Efficient Data Structures for Dynamic Graph Analysis\",\"authors\":\"Benjamin Schiller, J. Castrillón, T. Strufe\",\"doi\":\"10.1109/SITIS.2015.94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the era of social networks, gene sequencing, and big data, a new class of applications that analyze the properties of large graphs as they dynamically change over time has emerged. The performance of these applications is highly influenced by the data structures used to store and access the graph in memory. Depending on its size and structure, update frequency, and read accesses of the analysis, the use of different data structures can yield great performance variations. Even for expert programmers, it is not always obvious, which data structure is the best choice for a given scenario. In this paper, we present a framework for handling this issue automatically. It provides compile-time support for automatically selecting the most efficient data structures for a given graph analysis application assuming a consistent workload on the graph. We perform a measurement study to better understand the performance of five data structures and evaluate a prototype Java implementation of our framework. It achieves a speedup of up to 4.7× compared to basic data structure configurations for the analysis of real-world dynamic graphs.\",\"PeriodicalId\":128616,\"journal\":{\"name\":\"2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"volume\":\"269 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2015.94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2015.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在社交网络、基因测序和大数据时代,一类新的应用程序出现了,它们可以分析大图形随时间动态变化的属性。这些应用程序的性能受到用于在内存中存储和访问图的数据结构的高度影响。根据其大小和结构、更新频率和分析的读访问,使用不同的数据结构会产生很大的性能差异。即使对于专业程序员来说,对于给定的场景,哪种数据结构是最佳选择也并不总是显而易见的。在本文中,我们提出了一个自动处理这一问题的框架。它提供编译时支持,为给定的图分析应用程序自动选择最有效的数据结构,假设图上有一致的工作负载。我们执行了一个度量研究,以便更好地理解五种数据结构的性能,并评估我们框架的一个原型Java实现。与用于分析现实世界动态图形的基本数据结构配置相比,它实现了高达4.7倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Data Structures for Dynamic Graph Analysis
In the era of social networks, gene sequencing, and big data, a new class of applications that analyze the properties of large graphs as they dynamically change over time has emerged. The performance of these applications is highly influenced by the data structures used to store and access the graph in memory. Depending on its size and structure, update frequency, and read accesses of the analysis, the use of different data structures can yield great performance variations. Even for expert programmers, it is not always obvious, which data structure is the best choice for a given scenario. In this paper, we present a framework for handling this issue automatically. It provides compile-time support for automatically selecting the most efficient data structures for a given graph analysis application assuming a consistent workload on the graph. We perform a measurement study to better understand the performance of five data structures and evaluate a prototype Java implementation of our framework. It achieves a speedup of up to 4.7× compared to basic data structure configurations for the analysis of real-world dynamic graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信