{"title":"使用卷积神经网络识别不良图像","authors":"R. Moradi, Rahman Yousefzadeh","doi":"10.1109/SPIS.2015.7422327","DOIUrl":null,"url":null,"abstract":"In recent years different methods for detecting objectionable images have proposed. All of the previous systems are based on extracting pre-defined and certain features from the images. In this paper a method is proposed in order to detect objectionable images using convolutional neural networks. In this method first features are learned through a sparse auto-encoder and then training is done by a convolutional neural network. The architecture of the network consists of convolution and sub-sampling layers followed by a fully connected output layer which feeds a softmax classifier with cross entropy cost function. The proposed method is able to effectively detect 90.5% of images correctly employing a rather small training dataset.","PeriodicalId":424434,"journal":{"name":"2015 Signal Processing and Intelligent Systems Conference (SPIS)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recognizing objectionable images using convolutional neural nets\",\"authors\":\"R. Moradi, Rahman Yousefzadeh\",\"doi\":\"10.1109/SPIS.2015.7422327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years different methods for detecting objectionable images have proposed. All of the previous systems are based on extracting pre-defined and certain features from the images. In this paper a method is proposed in order to detect objectionable images using convolutional neural networks. In this method first features are learned through a sparse auto-encoder and then training is done by a convolutional neural network. The architecture of the network consists of convolution and sub-sampling layers followed by a fully connected output layer which feeds a softmax classifier with cross entropy cost function. The proposed method is able to effectively detect 90.5% of images correctly employing a rather small training dataset.\",\"PeriodicalId\":424434,\"journal\":{\"name\":\"2015 Signal Processing and Intelligent Systems Conference (SPIS)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Signal Processing and Intelligent Systems Conference (SPIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPIS.2015.7422327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Signal Processing and Intelligent Systems Conference (SPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIS.2015.7422327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recognizing objectionable images using convolutional neural nets
In recent years different methods for detecting objectionable images have proposed. All of the previous systems are based on extracting pre-defined and certain features from the images. In this paper a method is proposed in order to detect objectionable images using convolutional neural networks. In this method first features are learned through a sparse auto-encoder and then training is done by a convolutional neural network. The architecture of the network consists of convolution and sub-sampling layers followed by a fully connected output layer which feeds a softmax classifier with cross entropy cost function. The proposed method is able to effectively detect 90.5% of images correctly employing a rather small training dataset.