m-Hilbert多项式与偏微分方程通解的任意性

Q. Ding, Hong-qing Zhang
{"title":"m-Hilbert多项式与偏微分方程通解的任意性","authors":"Q. Ding, Hong-qing Zhang","doi":"10.1109/SYNASC.2009.22","DOIUrl":null,"url":null,"abstract":"Using the framework of formal theory of partial differential equations, we consider a method of computation of the m-Hilbert polynomial (i.e. Hilbert polynomial with multivariable), which generalizes the Seiler's theorem of Hilbert polynomial with single variable. Next we present an approach to compute the number of arbitrary functions of positive differential order in the general solution, and give a formally well-posed initial problem. Finally,as applications the Maxwell equations and weakly over determined equations are considered.","PeriodicalId":286180,"journal":{"name":"2009 11th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"306 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"m-Hilbert Polynomial and Arbitrariness of the General Solution of Partial Differential Equations\",\"authors\":\"Q. Ding, Hong-qing Zhang\",\"doi\":\"10.1109/SYNASC.2009.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the framework of formal theory of partial differential equations, we consider a method of computation of the m-Hilbert polynomial (i.e. Hilbert polynomial with multivariable), which generalizes the Seiler's theorem of Hilbert polynomial with single variable. Next we present an approach to compute the number of arbitrary functions of positive differential order in the general solution, and give a formally well-posed initial problem. Finally,as applications the Maxwell equations and weakly over determined equations are considered.\",\"PeriodicalId\":286180,\"journal\":{\"name\":\"2009 11th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":\"306 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 11th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2009.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 11th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2009.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用偏微分方程形式理论的框架,研究了m-希尔伯特多项式(即多变量希尔伯特多项式)的一种计算方法,推广了单变量希尔伯特多项式的塞勒定理。其次,我们给出了一种计算通解中任意正微分阶函数个数的方法,并给出了一个形式的适定初值问题。最后,作为应用,考虑了麦克斯韦方程和弱过定方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
m-Hilbert Polynomial and Arbitrariness of the General Solution of Partial Differential Equations
Using the framework of formal theory of partial differential equations, we consider a method of computation of the m-Hilbert polynomial (i.e. Hilbert polynomial with multivariable), which generalizes the Seiler's theorem of Hilbert polynomial with single variable. Next we present an approach to compute the number of arbitrary functions of positive differential order in the general solution, and give a formally well-posed initial problem. Finally,as applications the Maxwell equations and weakly over determined equations are considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信