半结构化医疗保健数据中的局部聚类发现

G. Costa, R. Ortale
{"title":"半结构化医疗保健数据中的局部聚类发现","authors":"G. Costa, R. Ortale","doi":"10.1109/WI.2018.00014","DOIUrl":null,"url":null,"abstract":"We propose an approach to clustering XML-based corpora of healthcare documents by their latent topic similarity. Our approach is a two-step process. Initially, the latent topic distributions of the input healthcare documents are inferred, by performing collapsed Gibbs sampling and parameter estimation under an XML topic model. Subsequently, the inferred distributions are grouped through established clustering techniques.","PeriodicalId":405966,"journal":{"name":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topical Cluster Discovery in Semistructured Healthcare Data\",\"authors\":\"G. Costa, R. Ortale\",\"doi\":\"10.1109/WI.2018.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an approach to clustering XML-based corpora of healthcare documents by their latent topic similarity. Our approach is a two-step process. Initially, the latent topic distributions of the input healthcare documents are inferred, by performing collapsed Gibbs sampling and parameter estimation under an XML topic model. Subsequently, the inferred distributions are grouped through established clustering techniques.\",\"PeriodicalId\":405966,\"journal\":{\"name\":\"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2018.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2018.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于潜在主题相似度的基于xml的医疗文档语料库聚类方法。我们的方法分为两步。最初,通过在XML主题模型下执行折叠Gibbs抽样和参数估计,推断输入医疗保健文档的潜在主题分布。随后,通过已建立的聚类技术对推断的分布进行分组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topical Cluster Discovery in Semistructured Healthcare Data
We propose an approach to clustering XML-based corpora of healthcare documents by their latent topic similarity. Our approach is a two-step process. Initially, the latent topic distributions of the input healthcare documents are inferred, by performing collapsed Gibbs sampling and parameter estimation under an XML topic model. Subsequently, the inferred distributions are grouped through established clustering techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信