Hamilton-Jacobi-Bellman方程的推广研究

Bo Liu, Bowen Xu, Lingling Qin
{"title":"Hamilton-Jacobi-Bellman方程的推广研究","authors":"Bo Liu, Bowen Xu, Lingling Qin","doi":"10.1145/3529763.3529770","DOIUrl":null,"url":null,"abstract":"Hamilton-Jacobi-Bellman equation is one of the most important equations in stochastic control theory. It is widely used in science and engineering disciplines with interference. This article uses Hamilton-Jacobi-Bellman equation and other dynamic programming theories to extend the optimal strategy problem to other fields, get the optimal selection strategy with guiding significance","PeriodicalId":123351,"journal":{"name":"Proceedings of the 3rd International Conference on Service Robotics Technologies","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Extension Research of Hamilton-Jacobi-Bellman Equation\",\"authors\":\"Bo Liu, Bowen Xu, Lingling Qin\",\"doi\":\"10.1145/3529763.3529770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hamilton-Jacobi-Bellman equation is one of the most important equations in stochastic control theory. It is widely used in science and engineering disciplines with interference. This article uses Hamilton-Jacobi-Bellman equation and other dynamic programming theories to extend the optimal strategy problem to other fields, get the optimal selection strategy with guiding significance\",\"PeriodicalId\":123351,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Service Robotics Technologies\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Service Robotics Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3529763.3529770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Service Robotics Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529763.3529770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Hamilton-Jacobi-Bellman方程是随机控制理论中重要的方程之一。它广泛应用于有干扰的科学和工程学科。本文利用Hamilton-Jacobi-Bellman方程等动态规划理论,将最优策略问题推广到其他领域,得到具有指导意义的最优选择策略
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Extension Research of Hamilton-Jacobi-Bellman Equation
Hamilton-Jacobi-Bellman equation is one of the most important equations in stochastic control theory. It is widely used in science and engineering disciplines with interference. This article uses Hamilton-Jacobi-Bellman equation and other dynamic programming theories to extend the optimal strategy problem to other fields, get the optimal selection strategy with guiding significance
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信