人工神经网络在可重构硬件加速器上的实现

Mario Porrmann, U. Witkowski, Heiko Kalte, U. Rückert
{"title":"人工神经网络在可重构硬件加速器上的实现","authors":"Mario Porrmann, U. Witkowski, Heiko Kalte, U. Rückert","doi":"10.1109/EMPDP.2002.994279","DOIUrl":null,"url":null,"abstract":"The hardware implementations of three different artificial neural networks are presented. The basis for the implementations is the reconfigurable hardware accelerator RAPTOR2000, which is based on FPGAs. The investigated neural network architectures are neural associative memories, self-organizing feature maps and basis function networks. Some of the key implementation issues are considered. In particular, the resource efficiency and performance of the presented realizations are discussed.","PeriodicalId":126071,"journal":{"name":"Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Implementation of artificial neural networks on a reconfigurable hardware accelerator\",\"authors\":\"Mario Porrmann, U. Witkowski, Heiko Kalte, U. Rückert\",\"doi\":\"10.1109/EMPDP.2002.994279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hardware implementations of three different artificial neural networks are presented. The basis for the implementations is the reconfigurable hardware accelerator RAPTOR2000, which is based on FPGAs. The investigated neural network architectures are neural associative memories, self-organizing feature maps and basis function networks. Some of the key implementation issues are considered. In particular, the resource efficiency and performance of the presented realizations are discussed.\",\"PeriodicalId\":126071,\"journal\":{\"name\":\"Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMPDP.2002.994279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMPDP.2002.994279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

给出了三种不同人工神经网络的硬件实现。实现的基础是基于fpga的可重构硬件加速器RAPTOR2000。研究的神经网络结构包括神经联想记忆、自组织特征映射和基函数网络。讨论了一些关键的实施问题。特别地,讨论了所提出的实现的资源效率和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of artificial neural networks on a reconfigurable hardware accelerator
The hardware implementations of three different artificial neural networks are presented. The basis for the implementations is the reconfigurable hardware accelerator RAPTOR2000, which is based on FPGAs. The investigated neural network architectures are neural associative memories, self-organizing feature maps and basis function networks. Some of the key implementation issues are considered. In particular, the resource efficiency and performance of the presented realizations are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信