Andrew R. Lilja, Shereen R Kadir, Rowan T. Hughes, Nick Gunn, Campbell W. Strong, Benjamin J. Bailey, R. Parton, J. McGhee
{"title":"纳米景观:真实的尺度和密度在实时三维电影可视化的细胞景观","authors":"Andrew R. Lilja, Shereen R Kadir, Rowan T. Hughes, Nick Gunn, Campbell W. Strong, Benjamin J. Bailey, R. Parton, J. McGhee","doi":"10.1145/3355056.3364567","DOIUrl":null,"url":null,"abstract":"3D computer-animated representations of complex biological systems and environments are often vastly oversimplified. There are a number of key reasons: to highlight a distinct biological mechanism of interest; technical limitations of hardware and software computer graphics (CG) capabilities; and a lack of data regarding cellular environments. This oversimplification perpetuates a naive understanding of fundamental cellular dynamics and topologies. This work attempts to address these challenges through the development of a first-person interactive virtual environment that more authentically depicts molecular scales, densities and interactions in real-time. Driven by a collaboration between scientists, CG developers and 3D computer artists, Nanoscapes utilizes the latest CG advances in real-time pipelines to construct a cinematic 3D environment that better communicates the complexity associated with the cellular surface and nanomedicine delivery to the cell.","PeriodicalId":101958,"journal":{"name":"SIGGRAPH Asia 2019 Posters","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoscapes: Authentic Scales and Densities in Real-Time 3D Cinematic Visualizations of Cellular Landscapes\",\"authors\":\"Andrew R. Lilja, Shereen R Kadir, Rowan T. Hughes, Nick Gunn, Campbell W. Strong, Benjamin J. Bailey, R. Parton, J. McGhee\",\"doi\":\"10.1145/3355056.3364567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D computer-animated representations of complex biological systems and environments are often vastly oversimplified. There are a number of key reasons: to highlight a distinct biological mechanism of interest; technical limitations of hardware and software computer graphics (CG) capabilities; and a lack of data regarding cellular environments. This oversimplification perpetuates a naive understanding of fundamental cellular dynamics and topologies. This work attempts to address these challenges through the development of a first-person interactive virtual environment that more authentically depicts molecular scales, densities and interactions in real-time. Driven by a collaboration between scientists, CG developers and 3D computer artists, Nanoscapes utilizes the latest CG advances in real-time pipelines to construct a cinematic 3D environment that better communicates the complexity associated with the cellular surface and nanomedicine delivery to the cell.\",\"PeriodicalId\":101958,\"journal\":{\"name\":\"SIGGRAPH Asia 2019 Posters\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2019 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3355056.3364567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2019 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3355056.3364567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanoscapes: Authentic Scales and Densities in Real-Time 3D Cinematic Visualizations of Cellular Landscapes
3D computer-animated representations of complex biological systems and environments are often vastly oversimplified. There are a number of key reasons: to highlight a distinct biological mechanism of interest; technical limitations of hardware and software computer graphics (CG) capabilities; and a lack of data regarding cellular environments. This oversimplification perpetuates a naive understanding of fundamental cellular dynamics and topologies. This work attempts to address these challenges through the development of a first-person interactive virtual environment that more authentically depicts molecular scales, densities and interactions in real-time. Driven by a collaboration between scientists, CG developers and 3D computer artists, Nanoscapes utilizes the latest CG advances in real-time pipelines to construct a cinematic 3D environment that better communicates the complexity associated with the cellular surface and nanomedicine delivery to the cell.