一种新的基于VSM的非结构化文档和查询相似度索引

Reshma Pk, S. Rajagopal, L. V. L.
{"title":"一种新的基于VSM的非结构化文档和查询相似度索引","authors":"Reshma Pk, S. Rajagopal, L. V. L.","doi":"10.1109/ICACCS48705.2020.9074255","DOIUrl":null,"url":null,"abstract":"Most of the Natural Language applications deal with the automatic detection of semantic text similarity between documents. In this paper, unstructured documents and queries are used for information retrieval. Hence to retrieve the most similar document for the given user query, the documents are retrieved in the order of similarity ranking. In the Vector Space Model, the text corresponding to documents and queries are converted into a numeric vector. Definition and number of dimensions are the critical aspects of VSM. The objective of this paper is to find out the most similar document from the set for the given user query. Different representations of the Vector Space Model is described in detail and the various similarity measures are calculated.","PeriodicalId":439003,"journal":{"name":"2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Novel Document and Query Similarity Indexing using VSM for Unstructured Documents\",\"authors\":\"Reshma Pk, S. Rajagopal, L. V. L.\",\"doi\":\"10.1109/ICACCS48705.2020.9074255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the Natural Language applications deal with the automatic detection of semantic text similarity between documents. In this paper, unstructured documents and queries are used for information retrieval. Hence to retrieve the most similar document for the given user query, the documents are retrieved in the order of similarity ranking. In the Vector Space Model, the text corresponding to documents and queries are converted into a numeric vector. Definition and number of dimensions are the critical aspects of VSM. The objective of this paper is to find out the most similar document from the set for the given user query. Different representations of the Vector Space Model is described in detail and the various similarity measures are calculated.\",\"PeriodicalId\":439003,\"journal\":{\"name\":\"2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACCS48705.2020.9074255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCS48705.2020.9074255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

大多数自然语言应用程序处理文档之间语义文本相似度的自动检测。本文将非结构化文档和查询用于信息检索。因此,为了为给定的用户查询检索最相似的文档,按照相似度排序检索文档。在向量空间模型中,与文档和查询相对应的文本被转换为数字向量。维度的定义和数量是VSM的关键方面。本文的目标是从给定的用户查询集合中找出最相似的文档。详细描述了向量空间模型的不同表示形式,并计算了各种相似度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Document and Query Similarity Indexing using VSM for Unstructured Documents
Most of the Natural Language applications deal with the automatic detection of semantic text similarity between documents. In this paper, unstructured documents and queries are used for information retrieval. Hence to retrieve the most similar document for the given user query, the documents are retrieved in the order of similarity ranking. In the Vector Space Model, the text corresponding to documents and queries are converted into a numeric vector. Definition and number of dimensions are the critical aspects of VSM. The objective of this paper is to find out the most similar document from the set for the given user query. Different representations of the Vector Space Model is described in detail and the various similarity measures are calculated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信