自适应数据通信接口:以用户为中心的可视化数据解释框架

G. Figueredo, Christian Wagner, J. Garibaldi, U. Aickelin
{"title":"自适应数据通信接口:以用户为中心的可视化数据解释框架","authors":"G. Figueredo, Christian Wagner, J. Garibaldi, U. Aickelin","doi":"10.2139/ssrn.2828007","DOIUrl":null,"url":null,"abstract":"In this position paper, we present ideas about creating a next generation framework towards an adaptive interface for data communication and visualisation systems. Our objective is to develop a system that accepts large data sets as inputs and provides user-centric, meaningful visual information to assist owners in making sense of their data collection. The proposed framework comprises four stages: (i) the knowledge base compilation, where we search and collect existing state-of-the-art visualisation techniques per domain and user preferences, (ii) the development of the learning and inference system, where we apply artificial intelligence techniques to learn, predict and recommend new graphic interpretations (iii) results evaluation, and (iv) reinforcement and adaptation, where valid outputs are stored in our knowledge base and the system is iteratively tuned to address new demands. These stages, as well as our overall vision, limitations and possible challenges are introduced in this article. We also discuss further extensions of this framework for other knowledge discovery tasks.","PeriodicalId":277092,"journal":{"name":"2015 IEEE Trustcom/BigDataSE/ISPA","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Data Communication Interface: A User-Centric Visual Data Interpretation Framework\",\"authors\":\"G. Figueredo, Christian Wagner, J. Garibaldi, U. Aickelin\",\"doi\":\"10.2139/ssrn.2828007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this position paper, we present ideas about creating a next generation framework towards an adaptive interface for data communication and visualisation systems. Our objective is to develop a system that accepts large data sets as inputs and provides user-centric, meaningful visual information to assist owners in making sense of their data collection. The proposed framework comprises four stages: (i) the knowledge base compilation, where we search and collect existing state-of-the-art visualisation techniques per domain and user preferences, (ii) the development of the learning and inference system, where we apply artificial intelligence techniques to learn, predict and recommend new graphic interpretations (iii) results evaluation, and (iv) reinforcement and adaptation, where valid outputs are stored in our knowledge base and the system is iteratively tuned to address new demands. These stages, as well as our overall vision, limitations and possible challenges are introduced in this article. We also discuss further extensions of this framework for other knowledge discovery tasks.\",\"PeriodicalId\":277092,\"journal\":{\"name\":\"2015 IEEE Trustcom/BigDataSE/ISPA\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Trustcom/BigDataSE/ISPA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2828007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Trustcom/BigDataSE/ISPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2828007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇意见书中,我们提出了关于为数据通信和可视化系统创建下一代自适应接口框架的想法。我们的目标是开发一个系统,接受大型数据集作为输入,并提供以用户为中心的、有意义的视觉信息,以帮助业主理解他们收集的数据。建议的架构包括四个阶段:(i)知识库编译,我们根据每个领域和用户偏好搜索和收集现有的最先进的可视化技术;(ii)学习和推理系统的开发,我们应用人工智能技术来学习、预测和推荐新的图形解释;(iii)结果评估;(iv)强化和适应,其中有效的输出存储在我们的知识库中,系统迭代调整以满足新的需求。本文将介绍这些阶段,以及我们的总体愿景、限制和可能的挑战。我们还讨论了该框架在其他知识发现任务中的进一步扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Data Communication Interface: A User-Centric Visual Data Interpretation Framework
In this position paper, we present ideas about creating a next generation framework towards an adaptive interface for data communication and visualisation systems. Our objective is to develop a system that accepts large data sets as inputs and provides user-centric, meaningful visual information to assist owners in making sense of their data collection. The proposed framework comprises four stages: (i) the knowledge base compilation, where we search and collect existing state-of-the-art visualisation techniques per domain and user preferences, (ii) the development of the learning and inference system, where we apply artificial intelligence techniques to learn, predict and recommend new graphic interpretations (iii) results evaluation, and (iv) reinforcement and adaptation, where valid outputs are stored in our knowledge base and the system is iteratively tuned to address new demands. These stages, as well as our overall vision, limitations and possible challenges are introduced in this article. We also discuss further extensions of this framework for other knowledge discovery tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信