一类可积riccati方程及其在最优控制中的应用

Yanxia Hu
{"title":"一类可积riccati方程及其在最优控制中的应用","authors":"Yanxia Hu","doi":"10.1109/CCDC.2010.5498520","DOIUrl":null,"url":null,"abstract":"In this paper, based on the theory of Lie group and the Hamilton-Jacobi Theorem, the solution of the secondorder linear homogeneous equations which can be obtained from a class of Riccati equations by transformation are considered. By solving the corresponding Hamilton-Jacobi equations, a class of integrable Riccati differential equations is obtained. Finally, the classical optimal control problem with finite time be considered, and a class of systems for the optimal control problem is solved by using the proposed method to solving the corresponding Riccati equations.","PeriodicalId":227938,"journal":{"name":"2010 Chinese Control and Decision Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of integrable riccati equations and applications to optimal control\",\"authors\":\"Yanxia Hu\",\"doi\":\"10.1109/CCDC.2010.5498520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, based on the theory of Lie group and the Hamilton-Jacobi Theorem, the solution of the secondorder linear homogeneous equations which can be obtained from a class of Riccati equations by transformation are considered. By solving the corresponding Hamilton-Jacobi equations, a class of integrable Riccati differential equations is obtained. Finally, the classical optimal control problem with finite time be considered, and a class of systems for the optimal control problem is solved by using the proposed method to solving the corresponding Riccati equations.\",\"PeriodicalId\":227938,\"journal\":{\"name\":\"2010 Chinese Control and Decision Conference\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Chinese Control and Decision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2010.5498520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Chinese Control and Decision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2010.5498520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文基于李群理论和Hamilton-Jacobi定理,研究了由一类Riccati方程通过变换得到的二阶线性齐次方程的解。通过求解相应的Hamilton-Jacobi方程,得到了一类可积的Riccati微分方程。最后,考虑具有有限时间的经典最优控制问题,并利用所提方法求解相应的Riccati方程,求解了一类最优控制问题的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A class of integrable riccati equations and applications to optimal control
In this paper, based on the theory of Lie group and the Hamilton-Jacobi Theorem, the solution of the secondorder linear homogeneous equations which can be obtained from a class of Riccati equations by transformation are considered. By solving the corresponding Hamilton-Jacobi equations, a class of integrable Riccati differential equations is obtained. Finally, the classical optimal control problem with finite time be considered, and a class of systems for the optimal control problem is solved by using the proposed method to solving the corresponding Riccati equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信