基于多模型自适应估计的工业风力机液压活塞蓄能器预压力估计

F. Sørensen, Malte von Benzon, Sigurd Klemmensen, Kenneth Schmidt, Jesper Liniger
{"title":"基于多模型自适应估计的工业风力机液压活塞蓄能器预压力估计","authors":"F. Sørensen, Malte von Benzon, Sigurd Klemmensen, Kenneth Schmidt, Jesper Liniger","doi":"10.1115/fpmc2019-1665","DOIUrl":null,"url":null,"abstract":"\n Failures in pitch systems may cause fatal damage to industrial wind turbines. One of the main reasons for failures in pitch systems is gas leakages of hydraulic accumulators. Due to the limited accessibility of offshore turbines, automated fault detection algorithms potentially increase turbine availability. The gas leakage is detected without downtime by using a model-based approach together with a bank and extended Kalman filters (EKF’s). The residual is analyzed using multi-model adaptive estimation (MMAE). The applied accumulator model relies on a thermal time constant describing the heat flux from the gas to the surroundings. The thermal time constant has been empirically derived from a prepressure of 50 to 172 bar. The fault detection algorithm is tested experimentally in a laboratory on a 25 liters piston accumulator using a load scenario obtained from real turbine data and a prepressure range of 50–140 bar. The Bank of EKF’s can classify the prepressure within a range and thereby detect if a gas leakage has occurred before it results in failure.","PeriodicalId":262589,"journal":{"name":"ASME/BATH 2019 Symposium on Fluid Power and Motion Control","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Estimation of Prepressure in Hydraulic Piston Accumulators for Industrial Wind Turbines Using Multi-Model Adaptive Estimation\",\"authors\":\"F. Sørensen, Malte von Benzon, Sigurd Klemmensen, Kenneth Schmidt, Jesper Liniger\",\"doi\":\"10.1115/fpmc2019-1665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Failures in pitch systems may cause fatal damage to industrial wind turbines. One of the main reasons for failures in pitch systems is gas leakages of hydraulic accumulators. Due to the limited accessibility of offshore turbines, automated fault detection algorithms potentially increase turbine availability. The gas leakage is detected without downtime by using a model-based approach together with a bank and extended Kalman filters (EKF’s). The residual is analyzed using multi-model adaptive estimation (MMAE). The applied accumulator model relies on a thermal time constant describing the heat flux from the gas to the surroundings. The thermal time constant has been empirically derived from a prepressure of 50 to 172 bar. The fault detection algorithm is tested experimentally in a laboratory on a 25 liters piston accumulator using a load scenario obtained from real turbine data and a prepressure range of 50–140 bar. The Bank of EKF’s can classify the prepressure within a range and thereby detect if a gas leakage has occurred before it results in failure.\",\"PeriodicalId\":262589,\"journal\":{\"name\":\"ASME/BATH 2019 Symposium on Fluid Power and Motion Control\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME/BATH 2019 Symposium on Fluid Power and Motion Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/fpmc2019-1665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME/BATH 2019 Symposium on Fluid Power and Motion Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fpmc2019-1665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

螺距系统的故障可能对工业风力涡轮机造成致命的损害。液压蓄能器气体泄漏是沥青系统故障的主要原因之一。由于海上涡轮机的可及性有限,自动故障检测算法可能会增加涡轮机的可用性。通过使用基于模型的方法以及库和扩展卡尔曼滤波器(EKF),可以在不停机的情况下检测气体泄漏。利用多模型自适应估计(MMAE)对残差进行分析。应用蓄能器模型依赖于描述从气体到周围环境的热通量的热时间常数。热时间常数是由50 ~ 172bar的预压力经验得出的。在实验室对25升活塞蓄能器的故障检测算法进行了实验测试,使用了从真实涡轮数据获得的负载场景和50-140 bar的预压范围。EKF银行可以在一定范围内对预压力进行分类,从而在气体泄漏导致故障之前检测是否已经发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Prepressure in Hydraulic Piston Accumulators for Industrial Wind Turbines Using Multi-Model Adaptive Estimation
Failures in pitch systems may cause fatal damage to industrial wind turbines. One of the main reasons for failures in pitch systems is gas leakages of hydraulic accumulators. Due to the limited accessibility of offshore turbines, automated fault detection algorithms potentially increase turbine availability. The gas leakage is detected without downtime by using a model-based approach together with a bank and extended Kalman filters (EKF’s). The residual is analyzed using multi-model adaptive estimation (MMAE). The applied accumulator model relies on a thermal time constant describing the heat flux from the gas to the surroundings. The thermal time constant has been empirically derived from a prepressure of 50 to 172 bar. The fault detection algorithm is tested experimentally in a laboratory on a 25 liters piston accumulator using a load scenario obtained from real turbine data and a prepressure range of 50–140 bar. The Bank of EKF’s can classify the prepressure within a range and thereby detect if a gas leakage has occurred before it results in failure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信