超大型MIMO通信系统的监督信道估计技术

Igor Sousa Osterno, Diego Sousa Aguiar, C. Fernandes
{"title":"超大型MIMO通信系统的监督信道估计技术","authors":"Igor Sousa Osterno, Diego Sousa Aguiar, C. Fernandes","doi":"10.1109/ITS.2014.6948023","DOIUrl":null,"url":null,"abstract":"This paper compares and assesses the performance of different channel estimation techniques for multicell multiuser multiple-input multiple-output (MIMO) systems in a very large (VL) MIMO scenario. Some of these techniques exploit properties of large random matrices and are less affected by pilot contamination, which is the case of the technique based on the eingenvalue decomposition (EVD) of the output covariance matrix. Other techniques do not exploit such properties and are more sensitive to errors as the number of antenna sensors grow large, which is the case of the classical least squares (LS) method. Our main goal is to investigate the use of those techniques in a VL-MIMO system under different scenarios. This paper also proposes a new method to solve the multiplicative matrix ambiguity of the EVD-based method by using a simple Khatri-Rao product. Numerical results are shown to atest the increased effectiveness of the EVD-based channel estimation in a VL-MIMO environment.","PeriodicalId":359348,"journal":{"name":"2014 International Telecommunications Symposium (ITS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On supervised channel estimation techniques for very large MIMO communication systems\",\"authors\":\"Igor Sousa Osterno, Diego Sousa Aguiar, C. Fernandes\",\"doi\":\"10.1109/ITS.2014.6948023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper compares and assesses the performance of different channel estimation techniques for multicell multiuser multiple-input multiple-output (MIMO) systems in a very large (VL) MIMO scenario. Some of these techniques exploit properties of large random matrices and are less affected by pilot contamination, which is the case of the technique based on the eingenvalue decomposition (EVD) of the output covariance matrix. Other techniques do not exploit such properties and are more sensitive to errors as the number of antenna sensors grow large, which is the case of the classical least squares (LS) method. Our main goal is to investigate the use of those techniques in a VL-MIMO system under different scenarios. This paper also proposes a new method to solve the multiplicative matrix ambiguity of the EVD-based method by using a simple Khatri-Rao product. Numerical results are shown to atest the increased effectiveness of the EVD-based channel estimation in a VL-MIMO environment.\",\"PeriodicalId\":359348,\"journal\":{\"name\":\"2014 International Telecommunications Symposium (ITS)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Telecommunications Symposium (ITS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITS.2014.6948023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Telecommunications Symposium (ITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITS.2014.6948023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文比较和评估了在超大型MIMO场景下多小区多用户多输入多输出(MIMO)系统中不同信道估计技术的性能。其中一些技术利用了大型随机矩阵的特性,并且受先导污染的影响较小,这就是基于输出协方差矩阵的特征值分解(EVD)的技术。其他技术没有利用这些特性,并且随着天线传感器数量的增加,对误差更敏感,这是经典的最小二乘(LS)方法的情况。我们的主要目标是研究这些技术在不同场景下的VL-MIMO系统中的使用。本文还提出了一种利用简单Khatri-Rao积来解决基于evd方法的乘法矩阵模糊问题的新方法。数值结果表明,在VL-MIMO环境下,基于evd的信道估计提高了有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On supervised channel estimation techniques for very large MIMO communication systems
This paper compares and assesses the performance of different channel estimation techniques for multicell multiuser multiple-input multiple-output (MIMO) systems in a very large (VL) MIMO scenario. Some of these techniques exploit properties of large random matrices and are less affected by pilot contamination, which is the case of the technique based on the eingenvalue decomposition (EVD) of the output covariance matrix. Other techniques do not exploit such properties and are more sensitive to errors as the number of antenna sensors grow large, which is the case of the classical least squares (LS) method. Our main goal is to investigate the use of those techniques in a VL-MIMO system under different scenarios. This paper also proposes a new method to solve the multiplicative matrix ambiguity of the EVD-based method by using a simple Khatri-Rao product. Numerical results are shown to atest the increased effectiveness of the EVD-based channel estimation in a VL-MIMO environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信