TLB

Jinbin Hu, Jiawei Huang, Wenjun Lv, Weihe Li, Jianxin Wang, Tian He
{"title":"TLB","authors":"Jinbin Hu, Jiawei Huang, Wenjun Lv, Weihe Li, Jianxin Wang, Tian He","doi":"10.1145/3337821.3337866","DOIUrl":null,"url":null,"abstract":"Modern datacenter topologies typically are multi-rooted trees consisting of multiple paths between any given pair of hosts. Recent load balancing designs focus on making full use of available parallel paths to provide high bisection bandwidth. However, they are agnostic to the mixed traffic generated by diverse applications in data centers and respectively use the same granularity in rerouting flows regardless of the flow type. Therefore, the short flows suffer the long-tailed queueing delay and reordering problems, while the throughputs of long flows are also degraded dramatically due to low link utilization and packet reordering under the non-adaptive granularity. To solve these problems, we design a traffic-aware load balancing (TLB) scheme to adopt different rerouting granularities for two kinds of flows. Specifically, TLB adaptively adjusts the switching granularity of long flows according to the load strength of short ones. Under the heavy load of short flows, the long flows use large switching granularity to help short ones obtain more opportunities in choosing short queues to complete quickly. When the load strength of short flows is low, the long flows switch paths more flexibly with small switching granularity to achieve high throughput. TLB is deployed at the switch, without any modifications on the end-hosts. The experimental results of NS2 simulations and Mininet implementation show that TLB significantly reduces the average flow completion time (AFCT) of short flows by ~15%-40% over the state-of-the-art load balancing schemes and achieves the high throughput for long flows.","PeriodicalId":405273,"journal":{"name":"Proceedings of the 48th International Conference on Parallel Processing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"TLB\",\"authors\":\"Jinbin Hu, Jiawei Huang, Wenjun Lv, Weihe Li, Jianxin Wang, Tian He\",\"doi\":\"10.1145/3337821.3337866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern datacenter topologies typically are multi-rooted trees consisting of multiple paths between any given pair of hosts. Recent load balancing designs focus on making full use of available parallel paths to provide high bisection bandwidth. However, they are agnostic to the mixed traffic generated by diverse applications in data centers and respectively use the same granularity in rerouting flows regardless of the flow type. Therefore, the short flows suffer the long-tailed queueing delay and reordering problems, while the throughputs of long flows are also degraded dramatically due to low link utilization and packet reordering under the non-adaptive granularity. To solve these problems, we design a traffic-aware load balancing (TLB) scheme to adopt different rerouting granularities for two kinds of flows. Specifically, TLB adaptively adjusts the switching granularity of long flows according to the load strength of short ones. Under the heavy load of short flows, the long flows use large switching granularity to help short ones obtain more opportunities in choosing short queues to complete quickly. When the load strength of short flows is low, the long flows switch paths more flexibly with small switching granularity to achieve high throughput. TLB is deployed at the switch, without any modifications on the end-hosts. The experimental results of NS2 simulations and Mininet implementation show that TLB significantly reduces the average flow completion time (AFCT) of short flows by ~15%-40% over the state-of-the-art load balancing schemes and achieves the high throughput for long flows.\",\"PeriodicalId\":405273,\"journal\":{\"name\":\"Proceedings of the 48th International Conference on Parallel Processing\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 48th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3337821.3337866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 48th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3337821.3337866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
TLB
Modern datacenter topologies typically are multi-rooted trees consisting of multiple paths between any given pair of hosts. Recent load balancing designs focus on making full use of available parallel paths to provide high bisection bandwidth. However, they are agnostic to the mixed traffic generated by diverse applications in data centers and respectively use the same granularity in rerouting flows regardless of the flow type. Therefore, the short flows suffer the long-tailed queueing delay and reordering problems, while the throughputs of long flows are also degraded dramatically due to low link utilization and packet reordering under the non-adaptive granularity. To solve these problems, we design a traffic-aware load balancing (TLB) scheme to adopt different rerouting granularities for two kinds of flows. Specifically, TLB adaptively adjusts the switching granularity of long flows according to the load strength of short ones. Under the heavy load of short flows, the long flows use large switching granularity to help short ones obtain more opportunities in choosing short queues to complete quickly. When the load strength of short flows is low, the long flows switch paths more flexibly with small switching granularity to achieve high throughput. TLB is deployed at the switch, without any modifications on the end-hosts. The experimental results of NS2 simulations and Mininet implementation show that TLB significantly reduces the average flow completion time (AFCT) of short flows by ~15%-40% over the state-of-the-art load balancing schemes and achieves the high throughput for long flows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信