学习红绿灯的颜色

A. Fregin, K. Dietmayer
{"title":"学习红绿灯的颜色","authors":"A. Fregin, K. Dietmayer","doi":"10.1109/ITSC.2018.8569746","DOIUrl":null,"url":null,"abstract":"Traffic light recognition is of great interest for advanced driver assistance systems and autonomous driving but still an unsolved problem. While a traffic light has few visual features for detection from camera images we believe the characteristic light represents a potentially very strong and stable feature. The traffic light is actively emitting light which is rarely influenced by weather or lighting condition. When using a color lookup table for an image segmentation-based object detector, the process of creating the lookup table is the crucial point. In this paper, we propose a method for generating a lookup table using real world data of a large dataset. The training data is sampled from labeled objects and stored as multisets. We contribute a frequency-based filtering method to clean the samples before using a k-nearest neighbor classifier to generalize. The result is stored as a three dimensional lookup table. The main contribution is a neighborhood-biasing technique that allows setting different operating points online without retraining. A challenging real world dataset containing several thousands of active lights is used to evaluate the process.","PeriodicalId":395239,"journal":{"name":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning Traffic Light Colors\",\"authors\":\"A. Fregin, K. Dietmayer\",\"doi\":\"10.1109/ITSC.2018.8569746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic light recognition is of great interest for advanced driver assistance systems and autonomous driving but still an unsolved problem. While a traffic light has few visual features for detection from camera images we believe the characteristic light represents a potentially very strong and stable feature. The traffic light is actively emitting light which is rarely influenced by weather or lighting condition. When using a color lookup table for an image segmentation-based object detector, the process of creating the lookup table is the crucial point. In this paper, we propose a method for generating a lookup table using real world data of a large dataset. The training data is sampled from labeled objects and stored as multisets. We contribute a frequency-based filtering method to clean the samples before using a k-nearest neighbor classifier to generalize. The result is stored as a three dimensional lookup table. The main contribution is a neighborhood-biasing technique that allows setting different operating points online without retraining. A challenging real world dataset containing several thousands of active lights is used to evaluate the process.\",\"PeriodicalId\":395239,\"journal\":{\"name\":\"2018 21st International Conference on Intelligent Transportation Systems (ITSC)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 21st International Conference on Intelligent Transportation Systems (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2018.8569746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2018.8569746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

交通灯识别是高级驾驶辅助系统和自动驾驶的重要研究方向,但目前仍是一个未解决的问题。虽然从摄像机图像中检测到交通灯的视觉特征很少,但我们认为特征光代表了一种潜在的非常强烈和稳定的特征。交通灯主动发光,很少受天气或照明条件的影响。当为基于图像分割的对象检测器使用颜色查找表时,创建查找表的过程是关键点。在本文中,我们提出了一种使用大型数据集的真实数据生成查找表的方法。训练数据从有标记的对象中采样并存储为多集。在使用k近邻分类器进行泛化之前,我们提出了一种基于频率的滤波方法来清理样本。结果存储为一个三维查找表。主要贡献是一种邻域偏向技术,允许在不进行再培训的情况下在线设置不同的操作点。一个具有挑战性的真实世界数据集包含数千个有源灯被用来评估这一过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Traffic Light Colors
Traffic light recognition is of great interest for advanced driver assistance systems and autonomous driving but still an unsolved problem. While a traffic light has few visual features for detection from camera images we believe the characteristic light represents a potentially very strong and stable feature. The traffic light is actively emitting light which is rarely influenced by weather or lighting condition. When using a color lookup table for an image segmentation-based object detector, the process of creating the lookup table is the crucial point. In this paper, we propose a method for generating a lookup table using real world data of a large dataset. The training data is sampled from labeled objects and stored as multisets. We contribute a frequency-based filtering method to clean the samples before using a k-nearest neighbor classifier to generalize. The result is stored as a three dimensional lookup table. The main contribution is a neighborhood-biasing technique that allows setting different operating points online without retraining. A challenging real world dataset containing several thousands of active lights is used to evaluate the process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信