学习贝叶斯网络改进指令缓存分析

M. Bartlett, I. Bate, J. Cussens
{"title":"学习贝叶斯网络改进指令缓存分析","authors":"M. Bartlett, I. Bate, J. Cussens","doi":"10.1109/ICMLA.2010.68","DOIUrl":null,"url":null,"abstract":"As modern processors can execute instructions at far greater rates than these instructions can be retrieved from main memory, computer systems commonly include caches that speed up access times. While these improve average execution times, they introduce additional complexity in determining the Worst Case Execution Times crucial for Real-Time Systems. In this paper, an approach is presented that utilises Bayesian Networks in order to more accurately estimate the worst-case caching behaviour of programs. With this method, a Bayesian Network is learned from traces of program execution that allows both constructive and destructive dependencies between instructions to be determined and a joint distribution over the number of cache hits to be found. Attention is given to the question of how the accuracy of the network depends on both the number of observations used for learning and the cardinality of the set of potential parents considered by the learning algorithm.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Learning Bayesian Networks for Improved Instruction Cache Analysis\",\"authors\":\"M. Bartlett, I. Bate, J. Cussens\",\"doi\":\"10.1109/ICMLA.2010.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As modern processors can execute instructions at far greater rates than these instructions can be retrieved from main memory, computer systems commonly include caches that speed up access times. While these improve average execution times, they introduce additional complexity in determining the Worst Case Execution Times crucial for Real-Time Systems. In this paper, an approach is presented that utilises Bayesian Networks in order to more accurately estimate the worst-case caching behaviour of programs. With this method, a Bayesian Network is learned from traces of program execution that allows both constructive and destructive dependencies between instructions to be determined and a joint distribution over the number of cache hits to be found. Attention is given to the question of how the accuracy of the network depends on both the number of observations used for learning and the cardinality of the set of potential parents considered by the learning algorithm.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

由于现代处理器执行指令的速度远远超过从主存储器中检索指令的速度,因此计算机系统通常包含加快访问时间的缓存。虽然这些改进了平均执行时间,但它们在确定对实时系统至关重要的最坏情况执行时间时引入了额外的复杂性。为了更准确地估计程序的最坏情况缓存行为,本文提出了一种利用贝叶斯网络的方法。使用这种方法,贝叶斯网络从程序执行的跟踪中学习,允许确定指令之间的建设性和破坏性依赖关系,并找到缓存命中数量的联合分布。注意到网络的准确性如何取决于用于学习的观测值的数量和学习算法所考虑的潜在父母集的基数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Bayesian Networks for Improved Instruction Cache Analysis
As modern processors can execute instructions at far greater rates than these instructions can be retrieved from main memory, computer systems commonly include caches that speed up access times. While these improve average execution times, they introduce additional complexity in determining the Worst Case Execution Times crucial for Real-Time Systems. In this paper, an approach is presented that utilises Bayesian Networks in order to more accurately estimate the worst-case caching behaviour of programs. With this method, a Bayesian Network is learned from traces of program execution that allows both constructive and destructive dependencies between instructions to be determined and a joint distribution over the number of cache hits to be found. Attention is given to the question of how the accuracy of the network depends on both the number of observations used for learning and the cardinality of the set of potential parents considered by the learning algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信