MFRIN:点云多特征融合的旋转不变网络

Shuyu Li, Xudong Zhang
{"title":"MFRIN:点云多特征融合的旋转不变网络","authors":"Shuyu Li, Xudong Zhang","doi":"10.1109/ICSP54964.2022.9778656","DOIUrl":null,"url":null,"abstract":"Point cloud carries rich geometric information and has unique advantages in computer vision field. Existing methods can effectively identify objects in a fixed perspective, but in practical, the object direction is unknown, which greatly affects the accuracy of the network. In this paper, we propose a pre-network based on ellipsoid fitting algorithm to extract rotation invariant features of point cloud. We design a two-branch network to mine features at different levels. In the first branch, we feed the rotation invariant feature to PointNet-based backbone to learn global feature; in the side branch, we use knn to transform the point cloud into a graph structure and apply attention model to extract more discriminative local features. We show that MFRIN can extract rotation-invariant representations for point cloud without data augmentation, and achieves best performance than state-of-the-art methods on rotating point clouds.","PeriodicalId":363766,"journal":{"name":"2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MFRIN: Rotation-Invariant Network with Multi-feature Fusion of Point Cloud\",\"authors\":\"Shuyu Li, Xudong Zhang\",\"doi\":\"10.1109/ICSP54964.2022.9778656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Point cloud carries rich geometric information and has unique advantages in computer vision field. Existing methods can effectively identify objects in a fixed perspective, but in practical, the object direction is unknown, which greatly affects the accuracy of the network. In this paper, we propose a pre-network based on ellipsoid fitting algorithm to extract rotation invariant features of point cloud. We design a two-branch network to mine features at different levels. In the first branch, we feed the rotation invariant feature to PointNet-based backbone to learn global feature; in the side branch, we use knn to transform the point cloud into a graph structure and apply attention model to extract more discriminative local features. We show that MFRIN can extract rotation-invariant representations for point cloud without data augmentation, and achieves best performance than state-of-the-art methods on rotating point clouds.\",\"PeriodicalId\":363766,\"journal\":{\"name\":\"2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSP54964.2022.9778656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSP54964.2022.9778656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

点云承载着丰富的几何信息,在计算机视觉领域具有独特的优势。现有的方法可以有效地识别固定角度的物体,但在实际中,物体的方向是未知的,这极大地影响了网络的精度。本文提出了一种基于椭球拟合的预网络算法来提取点云的旋转不变性特征。我们设计了一个双分支网络来挖掘不同层次的特征。在第一个分支中,我们将旋转不变量特征馈送到基于pointnet的骨干网络中学习全局特征;在侧分支中,我们使用KNN将点云转换为图结构,并应用注意模型提取更具判别性的局部特征。我们证明了MFRIN可以在没有数据增强的情况下提取点云的旋转不变表示,并且在旋转点云上取得了比目前最先进的方法更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MFRIN: Rotation-Invariant Network with Multi-feature Fusion of Point Cloud
Point cloud carries rich geometric information and has unique advantages in computer vision field. Existing methods can effectively identify objects in a fixed perspective, but in practical, the object direction is unknown, which greatly affects the accuracy of the network. In this paper, we propose a pre-network based on ellipsoid fitting algorithm to extract rotation invariant features of point cloud. We design a two-branch network to mine features at different levels. In the first branch, we feed the rotation invariant feature to PointNet-based backbone to learn global feature; in the side branch, we use knn to transform the point cloud into a graph structure and apply attention model to extract more discriminative local features. We show that MFRIN can extract rotation-invariant representations for point cloud without data augmentation, and achieves best performance than state-of-the-art methods on rotating point clouds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信