行进立方体中等值面的逼近:歧义问题

S. Matveyev
{"title":"行进立方体中等值面的逼近:歧义问题","authors":"S. Matveyev","doi":"10.1109/VISUAL.1994.346307","DOIUrl":null,"url":null,"abstract":"The purpose of the article is the consideration of the problem of ambiguity over the faces arising in the Marching Cube algorithm. The article shows that for unambiguous choice of the sequence of the points of intersection of the isosurface with edges confining the face it is sufficient to sort them along one of the coordinates. It also presents the solution of this problem inside the cube. Graph theory methods are used to approximate the isosurface inside the cell.<<ETX>>","PeriodicalId":273215,"journal":{"name":"Proceedings Visualization '94","volume":"268 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Approximation of isosurface in the Marching Cube: ambiguity problem\",\"authors\":\"S. Matveyev\",\"doi\":\"10.1109/VISUAL.1994.346307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of the article is the consideration of the problem of ambiguity over the faces arising in the Marching Cube algorithm. The article shows that for unambiguous choice of the sequence of the points of intersection of the isosurface with edges confining the face it is sufficient to sort them along one of the coordinates. It also presents the solution of this problem inside the cube. Graph theory methods are used to approximate the isosurface inside the cell.<<ETX>>\",\"PeriodicalId\":273215,\"journal\":{\"name\":\"Proceedings Visualization '94\",\"volume\":\"268 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Visualization '94\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.1994.346307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Visualization '94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.1994.346307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

本文的目的是考虑在行进立方体算法中出现的面部模糊问题。本文表明,为了明确地选择具有限定面的边的等值面的交点序列,沿着其中一个坐标对它们进行排序就足够了。它还在立方体内部给出了这个问题的解决方案。图论方法用于逼近单元内的等值面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation of isosurface in the Marching Cube: ambiguity problem
The purpose of the article is the consideration of the problem of ambiguity over the faces arising in the Marching Cube algorithm. The article shows that for unambiguous choice of the sequence of the points of intersection of the isosurface with edges confining the face it is sufficient to sort them along one of the coordinates. It also presents the solution of this problem inside the cube. Graph theory methods are used to approximate the isosurface inside the cell.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信