基于遗传的机器学习:合并匹兹堡和密歇根,一个隐式特征选择机制和一个新的交叉算子

C. Pitangui, Gerson Zaverucha
{"title":"基于遗传的机器学习:合并匹兹堡和密歇根,一个隐式特征选择机制和一个新的交叉算子","authors":"C. Pitangui, Gerson Zaverucha","doi":"10.1109/HIS.2006.28","DOIUrl":null,"url":null,"abstract":"This paper presents, for discrete data, a new crossover operator to be used together with the Natural Coding. This new operator, differently of the already existing one, beyond possessing high speed of application, explores the search space in the same way that the crossover operator used when the binary representation is adopted. Additionally, this work presents a new way of representing the mechanism of Feature Selection. This representation provides a high economy of memory, fact that supplies to the system a double genetic exploration. The system uses a hybridization of Pittsburgh and Michigan approaches. We compare our system with the C4.5 algorithm in some datasets from UCI. Results show that the proposed system is very robust and can achieve high accuracy with simple rules.","PeriodicalId":150732,"journal":{"name":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Genetic Based Machine Learning: Merging Pittsburgh and Michigan, an Implicit Feature Selection Mechanism and a New Crossover Operator\",\"authors\":\"C. Pitangui, Gerson Zaverucha\",\"doi\":\"10.1109/HIS.2006.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents, for discrete data, a new crossover operator to be used together with the Natural Coding. This new operator, differently of the already existing one, beyond possessing high speed of application, explores the search space in the same way that the crossover operator used when the binary representation is adopted. Additionally, this work presents a new way of representing the mechanism of Feature Selection. This representation provides a high economy of memory, fact that supplies to the system a double genetic exploration. The system uses a hybridization of Pittsburgh and Michigan approaches. We compare our system with the C4.5 algorithm in some datasets from UCI. Results show that the proposed system is very robust and can achieve high accuracy with simple rules.\",\"PeriodicalId\":150732,\"journal\":{\"name\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2006.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2006.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

针对离散数据,本文提出了一种新的交叉算子与自然编码相结合的方法。这种新的算子与已有的算子不同,除了具有较高的应用速度外,它与采用二进制表示时的交叉算子一样,对搜索空间进行探索。此外,本文还提出了一种表征特征选择机制的新方法。这种表示提供了较高的内存经济性,事实上为系统提供了双重遗传探索。该系统采用匹兹堡和密歇根方法的杂交。我们在UCI的一些数据集上与C4.5算法进行了比较。结果表明,该系统具有很强的鲁棒性,可以用简单的规则实现较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic Based Machine Learning: Merging Pittsburgh and Michigan, an Implicit Feature Selection Mechanism and a New Crossover Operator
This paper presents, for discrete data, a new crossover operator to be used together with the Natural Coding. This new operator, differently of the already existing one, beyond possessing high speed of application, explores the search space in the same way that the crossover operator used when the binary representation is adopted. Additionally, this work presents a new way of representing the mechanism of Feature Selection. This representation provides a high economy of memory, fact that supplies to the system a double genetic exploration. The system uses a hybridization of Pittsburgh and Michigan approaches. We compare our system with the C4.5 algorithm in some datasets from UCI. Results show that the proposed system is very robust and can achieve high accuracy with simple rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信