测地线为轨道的齐次流形。最近的研究结果和一些有待解决的问题

A. Arvanitoyeorgos
{"title":"测地线为轨道的齐次流形。最近的研究结果和一些有待解决的问题","authors":"A. Arvanitoyeorgos","doi":"10.33232/bims.0079.5.29","DOIUrl":null,"url":null,"abstract":"A homogeneous Riemannian manifold $(M=G/K, g)$ is called a space with homogeneous geodesics or a $G$-g.o. space if every geodesic $\\gamma (t)$ of $M$ is an orbit of a one-parameter subgroup of $G$, that is $\\gamma(t) = \\exp(tX)\\cdot o$, for some non zero vector $X$ in the Lie algebra of $G$. We give an exposition on the subject, by presenting techniques that have been used so far and a wide selection of previous and recent results. \nWe also present some open problems.","PeriodicalId":103198,"journal":{"name":"Irish Mathematical Society Bulletin","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Homogeneous manifolds whose geodesics are orbits. Recent results and some open problems\",\"authors\":\"A. Arvanitoyeorgos\",\"doi\":\"10.33232/bims.0079.5.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A homogeneous Riemannian manifold $(M=G/K, g)$ is called a space with homogeneous geodesics or a $G$-g.o. space if every geodesic $\\\\gamma (t)$ of $M$ is an orbit of a one-parameter subgroup of $G$, that is $\\\\gamma(t) = \\\\exp(tX)\\\\cdot o$, for some non zero vector $X$ in the Lie algebra of $G$. We give an exposition on the subject, by presenting techniques that have been used so far and a wide selection of previous and recent results. \\nWe also present some open problems.\",\"PeriodicalId\":103198,\"journal\":{\"name\":\"Irish Mathematical Society Bulletin\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irish Mathematical Society Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33232/bims.0079.5.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irish Mathematical Society Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33232/bims.0079.5.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

一个齐次黎曼流形$(M=G/K, g)$被称为具有齐次测地线的空间或$G$ -g.o.空间,如果$M$的每个测地线$\gamma (t)$是$G$的一个单参数子群的轨道,即$\gamma(t) = \exp(tX)\cdot o$,对于$G$的李代数中的某个非零向量$X$。我们通过介绍迄今为止使用的技术和广泛选择以前和最近的结果,对这个主题进行了阐述。我们还提出了一些悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homogeneous manifolds whose geodesics are orbits. Recent results and some open problems
A homogeneous Riemannian manifold $(M=G/K, g)$ is called a space with homogeneous geodesics or a $G$-g.o. space if every geodesic $\gamma (t)$ of $M$ is an orbit of a one-parameter subgroup of $G$, that is $\gamma(t) = \exp(tX)\cdot o$, for some non zero vector $X$ in the Lie algebra of $G$. We give an exposition on the subject, by presenting techniques that have been used so far and a wide selection of previous and recent results. We also present some open problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信