极小李雅普诺夫指数系统的新混沌指标

K. Okubo, K. Umeno
{"title":"极小李雅普诺夫指数系统的新混沌指标","authors":"K. Okubo, K. Umeno","doi":"10.1142/9789813202740_0011","DOIUrl":null,"url":null,"abstract":"We propose new chaos indicators for systems with extremely small positive Lyapunov exponents. These chaos indicators can firstly detect a sharp transition between the Arnold diffusion regime and the Chirikov diffusion regime of the Froeschl\\'e map and secondly detect chaoticity in systems with zero Lyapunov exponent such as the Boole transformation and the $S$-unimodal function to characterize sub-exponential diffusions.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New chaos indicators for systems with extremely small Lyapunov exponents\",\"authors\":\"K. Okubo, K. Umeno\",\"doi\":\"10.1142/9789813202740_0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose new chaos indicators for systems with extremely small positive Lyapunov exponents. These chaos indicators can firstly detect a sharp transition between the Arnold diffusion regime and the Chirikov diffusion regime of the Froeschl\\\\'e map and secondly detect chaoticity in systems with zero Lyapunov exponent such as the Boole transformation and the $S$-unimodal function to characterize sub-exponential diffusions.\",\"PeriodicalId\":166772,\"journal\":{\"name\":\"arXiv: Chaotic Dynamics\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789813202740_0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789813202740_0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了具有极小正李雅普诺夫指数系统的新的混沌指标。这些混沌指标首先可以检测Froeschl\'e映射的Arnold扩散区和Chirikov扩散区之间的急剧过渡,其次可以检测Lyapunov指数为零的系统中的混沌性,例如布尔变换和$S$-单峰函数,以表征次指数扩散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New chaos indicators for systems with extremely small Lyapunov exponents
We propose new chaos indicators for systems with extremely small positive Lyapunov exponents. These chaos indicators can firstly detect a sharp transition between the Arnold diffusion regime and the Chirikov diffusion regime of the Froeschl\'e map and secondly detect chaoticity in systems with zero Lyapunov exponent such as the Boole transformation and the $S$-unimodal function to characterize sub-exponential diffusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信